Estimation of the relative contributions to the electronic energy transfer rates based on Förster theory: The case of C-phycocyanin chromophores.

Biophysics and Physicobiology Pub Date : 2021-07-30 eCollection Date: 2021-01-01 DOI:10.2142/biophysico.bppb-v18.021
Kenji Mishima, Mitsuo Shoji, Yasufumi Umena, Mauro Boero, Yasuteru Shigeta
{"title":"Estimation of the relative contributions to the electronic energy transfer rates based on Förster theory: The case of C-phycocyanin chromophores.","authors":"Kenji Mishima,&nbsp;Mitsuo Shoji,&nbsp;Yasufumi Umena,&nbsp;Mauro Boero,&nbsp;Yasuteru Shigeta","doi":"10.2142/biophysico.bppb-v18.021","DOIUrl":null,"url":null,"abstract":"<p><p>In the present study, we provide a reformulation of the theory originally proposed by Förster which allows for simple and convenient formulas useful to estimate the relative contributions of transition dipole moments of a donor and acceptor (chemical factors), their orientation factors (intermolecular structural factors), intermolecular center-to-center distances (intermolecular structural factors), spectral overlaps of absorption and emission spectra (photophysical factors), and refractive index (material factor) to the excitation energy transfer (EET) rate constant. To benchmark their validity, we focused on the EET occurring in C-phycocyanin (C-PC) chromophores. To this aim, we resorted to quantum chemistry calculations to get optimized molecular structures of the C-PC chromophores within the density functional theory (DFT) framework. The absorption and emission spectra, as well as transition dipole moments, were computed by using the time-dependent DFT (TDDFT). Our method was applied to several types of C-PCs showing that the EET rates are determined by an interplay of their specific physical, chemical, and geometrical features. These results show that our formulas can become a useful tool for a reliable estimation of the relative contributions of the factors regulating the EET transfer rate.</p>","PeriodicalId":8976,"journal":{"name":"Biophysics and Physicobiology","volume":" ","pages":"196-214"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/14/96/18_196.PMC8421246.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics and Physicobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2142/biophysico.bppb-v18.021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the present study, we provide a reformulation of the theory originally proposed by Förster which allows for simple and convenient formulas useful to estimate the relative contributions of transition dipole moments of a donor and acceptor (chemical factors), their orientation factors (intermolecular structural factors), intermolecular center-to-center distances (intermolecular structural factors), spectral overlaps of absorption and emission spectra (photophysical factors), and refractive index (material factor) to the excitation energy transfer (EET) rate constant. To benchmark their validity, we focused on the EET occurring in C-phycocyanin (C-PC) chromophores. To this aim, we resorted to quantum chemistry calculations to get optimized molecular structures of the C-PC chromophores within the density functional theory (DFT) framework. The absorption and emission spectra, as well as transition dipole moments, were computed by using the time-dependent DFT (TDDFT). Our method was applied to several types of C-PCs showing that the EET rates are determined by an interplay of their specific physical, chemical, and geometrical features. These results show that our formulas can become a useful tool for a reliable estimation of the relative contributions of the factors regulating the EET transfer rate.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Förster理论的电子能量传递速率的相对贡献估计:以c -藻蓝蛋白发色团为例。
在本研究中,我们对Förster最初提出的理论进行了重新表述,该理论允许使用简单方便的公式来估计供体和受体的跃迁偶极矩(化学因素),它们的取向因素(分子间结构因素),分子间中心到中心距离(分子间结构因素),吸收和发射光谱重叠(光物理因素),折射率(材料因子)与激发能传递(EET)速率常数。为了验证它们的有效性,我们重点研究了c -藻蓝蛋白(C-PC)发色团中的EET。为此,我们利用量子化学计算在密度泛函理论(DFT)框架内得到了C-PC发色团的优化分子结构。利用时变离散傅立叶变换(TDDFT)计算了吸收光谱和发射光谱以及跃迁偶极矩。我们的方法应用于几种类型的c - pc,表明EET速率是由其特定的物理,化学和几何特征的相互作用决定的。这些结果表明,我们的公式可以成为可靠估计调节EET转移速率的因素的相对贡献的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optogenetics II, sponsored by JST: Report for the session 13. MOLASS: Software for automatic processing of matrix data obtained from small-angle X-ray scattering and UV-visible spectroscopy combined with size-exclusion chromatography. Molecular mechanisms of amyloid-β peptide fibril and oligomer formation: NMR-based challenges. Near-field optical microscopy toward its applications for biological studies. Improving two-photon excitation microscopy for sharper and faster biological imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1