Adaptive Kalman Filtering.

Steven D Brown, Sarah C Rutan
{"title":"Adaptive Kalman Filtering.","authors":"Steven D Brown,&nbsp;Sarah C Rutan","doi":"10.6028/jres.090.032","DOIUrl":null,"url":null,"abstract":"<p><p>The increased power of small computers makes the use of parameter estimation methods attractive. Such methods have a number of uses in analytical chemistry. When valid models are available, many methods work well, but when models used in the estimation are in error, most methods fail. Methods based on the Kalman filter, a linear recursive estimator, may be modified to perform parameter estimation with erroneous models. Modifications to the filter involve allowing the filter to adapt the measurement model to the experimental data through matching the theoretical and observed covariance of the filter innovations sequence. The adaptive filtering methods that result have a number of applications in analytical chemistry.</p>","PeriodicalId":93321,"journal":{"name":"Journal of research of the National Bureau of Standards (1977)","volume":"90 6","pages":"403-407"},"PeriodicalIF":0.0000,"publicationDate":"1985-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644984/pdf/jres-90-403.pdf","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of research of the National Bureau of Standards (1977)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/jres.090.032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

Abstract

The increased power of small computers makes the use of parameter estimation methods attractive. Such methods have a number of uses in analytical chemistry. When valid models are available, many methods work well, but when models used in the estimation are in error, most methods fail. Methods based on the Kalman filter, a linear recursive estimator, may be modified to perform parameter estimation with erroneous models. Modifications to the filter involve allowing the filter to adapt the measurement model to the experimental data through matching the theoretical and observed covariance of the filter innovations sequence. The adaptive filtering methods that result have a number of applications in analytical chemistry.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应卡尔曼滤波。
小型计算机性能的提高使得参数估计方法的使用具有吸引力。这种方法在分析化学中有许多用途。当有效的模型可用时,许多方法工作得很好,但是当估计中使用的模型出错时,大多数方法都失败了。基于线性递归估计器卡尔曼滤波的方法可能会被修改以使用错误的模型进行参数估计。对滤波器的修改包括允许滤波器通过匹配滤波器创新序列的理论协方差和观测协方差来使测量模型适应实验数据。由此产生的自适应滤波方法在分析化学中有许多应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Temperature Dependence of Spectral Broadening in the Hg (61S0-63P1) Multiplet At High Optical Densities. Absolute Isotopic Abundance Ratio And Atomic Weight Of a Reference Sample of Gallium. Thermal Expansion of Platinum And Platinum-Rhodium Alloys. The Triple Point of Oxygen In Sealed Transportable Cells. A Multi-kilogram Capacity Calorimeter For Heterogeneous Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1