Robert Ross, William M Mongan, Patrick O'Neill, Ilhaan Rasheed, Adam Fontecchio, Genevieve Dion, Kapil R Dandekar
{"title":"An Adaptively Parameterized Algorithm Estimating Respiratory Rate from a Passive Wearable RFID Smart Garment.","authors":"Robert Ross, William M Mongan, Patrick O'Neill, Ilhaan Rasheed, Adam Fontecchio, Genevieve Dion, Kapil R Dandekar","doi":"10.1109/COMPSAC51774.2021.00110","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, wired respiratory rate sensors tether patients to a location and can potentially obscure their body from medical staff. In addition, current wired respiratory rate sensors are either inaccurate or invasive. Spurred by these deficiencies, we have developed the Bellyband, a less invasive smart garment sensor, which uses wireless, passive Radio Frequency Identification (RFID) to detect bio-signals. Though the Bellyband solves many physical problems, it creates a signal processing challenge, due to its noisy, quantized signal. Here, we present an algorithm by which to estimate respiratory rate from the Bellyband. The algorithm uses an adaptively parameterized Savitzky-Golay (SG) filter to smooth the signal. The adaptive parameterization enables the algorithm to be effective on a wide range of respiratory frequencies, even when the frequencies change sharply. Further, the algorithm is three times faster and three times more accurate than the current Bellyband respiratory rate detection algorithm and is able to run in real time. Using an off-the-shelf respiratory monitor and metronome-synchronized breathing, we gathered 25 sets of data and tested the algorithm against these trials. The algorithm's respiratory rate estimates diverged from ground truth by an average Root Mean Square Error (RMSE) of 4.1 breaths per minute (BPM) over all 25 trials. Further, preliminary results suggest that the algorithm could be made as or more accurate than widely used algorithms that detect the respiratory rate of non-ventilated patients using data from an Electrocardiogram (ECG) or Impedance Plethysmography (IP).</p>","PeriodicalId":74502,"journal":{"name":"Proceedings : Annual International Computer Software and Applications Conference. COMPSAC","volume":"2021 ","pages":"774-784"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8463037/pdf/nihms-1701078.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings : Annual International Computer Software and Applications Conference. COMPSAC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC51774.2021.00110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Currently, wired respiratory rate sensors tether patients to a location and can potentially obscure their body from medical staff. In addition, current wired respiratory rate sensors are either inaccurate or invasive. Spurred by these deficiencies, we have developed the Bellyband, a less invasive smart garment sensor, which uses wireless, passive Radio Frequency Identification (RFID) to detect bio-signals. Though the Bellyband solves many physical problems, it creates a signal processing challenge, due to its noisy, quantized signal. Here, we present an algorithm by which to estimate respiratory rate from the Bellyband. The algorithm uses an adaptively parameterized Savitzky-Golay (SG) filter to smooth the signal. The adaptive parameterization enables the algorithm to be effective on a wide range of respiratory frequencies, even when the frequencies change sharply. Further, the algorithm is three times faster and three times more accurate than the current Bellyband respiratory rate detection algorithm and is able to run in real time. Using an off-the-shelf respiratory monitor and metronome-synchronized breathing, we gathered 25 sets of data and tested the algorithm against these trials. The algorithm's respiratory rate estimates diverged from ground truth by an average Root Mean Square Error (RMSE) of 4.1 breaths per minute (BPM) over all 25 trials. Further, preliminary results suggest that the algorithm could be made as or more accurate than widely used algorithms that detect the respiratory rate of non-ventilated patients using data from an Electrocardiogram (ECG) or Impedance Plethysmography (IP).