Sankhamita Sinha, Subhayan Bhattacharya, Sarbani Roy
{"title":"Impact of second-order network motif on online social networks.","authors":"Sankhamita Sinha, Subhayan Bhattacharya, Sarbani Roy","doi":"10.1007/s11227-021-04079-7","DOIUrl":null,"url":null,"abstract":"<p><p>The behaviour of individual users in an online social network is a major contributing factor in determining the outcome of multiple network phenomenon. Group formation, growth of the network, information propagation, and rumour blocking are some of the many network behavioural traits that are influenced by the interaction patterns of the users in the network. Network motifs capture one such interaction pattern between users in online social networks (OSNs). For this work, four second-order (two-edged) network motifs have been considered, namely, message receiving pattern, message broadcasting pattern, message passing pattern, and reciprocal message pattern, to analyse user behaviour in online social networks. This work provides and utilizes a node interaction pattern-finding algorithm to identify the frequency of aforementioned second-order network motifs in six real-life online social networks (Facebook, GPlus, GNU, Twitter, Enron Email, and Wiki-vote). The frequency of network motifs participated in by a node is considered for the relative ranking of all nodes in the online social networks. The highest-rated nodes are considered seeds for information propagation. The performance of using network motifs for ranking nodes as seeds for information propagation is validated using statistical metrics Z-score, concentration, and significance profile and compared with baseline ranking methods in-degree centrality, out-degree centrality, closeness centrality, and PageRank. The comparative study shows the performance of centrality measures to be similar or better than second-order network motifs as seed nodes in information diffusion. The experimental results on finding frequencies and importance of different interaction patterns provide insights on the significance and representation of each such interaction pattern and how it varies from network to network.</p>","PeriodicalId":50034,"journal":{"name":"Journal of Supercomputing","volume":"78 4","pages":"5450-5478"},"PeriodicalIF":2.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8461152/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercomputing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11227-021-04079-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1
Abstract
The behaviour of individual users in an online social network is a major contributing factor in determining the outcome of multiple network phenomenon. Group formation, growth of the network, information propagation, and rumour blocking are some of the many network behavioural traits that are influenced by the interaction patterns of the users in the network. Network motifs capture one such interaction pattern between users in online social networks (OSNs). For this work, four second-order (two-edged) network motifs have been considered, namely, message receiving pattern, message broadcasting pattern, message passing pattern, and reciprocal message pattern, to analyse user behaviour in online social networks. This work provides and utilizes a node interaction pattern-finding algorithm to identify the frequency of aforementioned second-order network motifs in six real-life online social networks (Facebook, GPlus, GNU, Twitter, Enron Email, and Wiki-vote). The frequency of network motifs participated in by a node is considered for the relative ranking of all nodes in the online social networks. The highest-rated nodes are considered seeds for information propagation. The performance of using network motifs for ranking nodes as seeds for information propagation is validated using statistical metrics Z-score, concentration, and significance profile and compared with baseline ranking methods in-degree centrality, out-degree centrality, closeness centrality, and PageRank. The comparative study shows the performance of centrality measures to be similar or better than second-order network motifs as seed nodes in information diffusion. The experimental results on finding frequencies and importance of different interaction patterns provide insights on the significance and representation of each such interaction pattern and how it varies from network to network.
期刊介绍:
The Journal of Supercomputing publishes papers on the technology, architecture and systems, algorithms, languages and programs, performance measures and methods, and applications of all aspects of Supercomputing. Tutorial and survey papers are intended for workers and students in the fields associated with and employing advanced computer systems. The journal also publishes letters to the editor, especially in areas relating to policy, succinct statements of paradoxes, intuitively puzzling results, partial results and real needs.
Published theoretical and practical papers are advanced, in-depth treatments describing new developments and new ideas. Each includes an introduction summarizing prior, directly pertinent work that is useful for the reader to understand, in order to appreciate the advances being described.