Studies Utilizing Current Estimated CSF Pressure Equations Should Not Be Conducted and Published [Letter].

IF 3.1 Q1 OPHTHALMOLOGY Eye and Brain Pub Date : 2021-09-24 eCollection Date: 2021-01-01 DOI:10.2147/EB.S338935
David Fleischman, Hanspeter E Killer
{"title":"Studies Utilizing Current Estimated CSF Pressure Equations Should Not Be Conducted and Published [Letter].","authors":"David Fleischman, Hanspeter E Killer","doi":"10.2147/EB.S338935","DOIUrl":null,"url":null,"abstract":"1Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; 2Department of Ophthalmology, Kantonsspital Aarau, Aarau, Switzerland Dear editor We took interest in the recent article by Qian Wang and colleagues, “Prevalence of Retinal Vein Occlusions and Estimated Cerebrospinal Fluid Pressure: The Kailuan Eye Study.” We agree with the authors that CSF pressure, in particular the perioptic subarachnoid space pressure, is likely important in the development of many cases of retinal vein occlusions. However, we were troubled by the methodology employed by the study team. While we appreciate the mention of our study that had found that formulae used to predict CSFP derived from clinical data were unable to accurately estimate CSF pressures, we were surprised that this formula was nonetheless used in the current study. Even more troubling is that the reference given for the justification of the formula, “eCSFP [mm Hg] = 0.44 * BMI [kg/m2] + 0.16 * DBP [mm Hg] – 0.18 * Age [years],” does not in fact explain its derivation. The Xie study from Critical Care used patientspecific anatomic measurements derived from MRI data in order to estimate CSFP, an important factor that has been excluded from the current study’s equation. CSF pressure is not static. It varies over time as a function of the production and resorption rate of CSF and body posture. A formula that is derived top down from preexisting data (such as BMI and DBP) is far from representing the complexity of CSF dynamics, including CSF pressure. Neither is CSF pressure and composition homogeneous throughout all CSF-containing spaces. Further, even if it could reflect the appropriate CSF pressure in the lumbar spine region, it is purely speculative to assume that this measurement could be extrapolated to the pressure within the subarachnoid space of the optic nerve. Several studies in patients with papilledema as well as normal tension glaucoma demonstrated “comparted” optic nerve sheaths, a finding that cautions even the assumption that the pressure measured at the lumber site reflects the pressure in the perioptic space. Thus, to assume that all CSF spaces connect via a linear continuum can be quite misleading. In conclusion, we are strongly supportive of research that will further the understanding of the cerebrospinal fluid’s role in ophthalmic disease. However, bad data are worse than no data. We would have expected that the limitations of such a study should have been clearly explained to the reader who may not be familiar with this complex topic, and we discourage the use of unvalidated formulae for CSF and ophthalmic research. Correspondence: David Fleischman Department of Ophthalmology, University of North Carolina at Chapel Hill, 5126 Bioinformatics Bldg #7040, Chapel Hill, NC, 27599-7040, USA Tel +1 919 259-9336 Fax +1 919 966-1908 Email david8fleischman@gmail.com","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"13 ","pages":"239-240"},"PeriodicalIF":3.1000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e2/e2/eb-13-239.PMC8478159.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eye and Brain","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/EB.S338935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

1Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; 2Department of Ophthalmology, Kantonsspital Aarau, Aarau, Switzerland Dear editor We took interest in the recent article by Qian Wang and colleagues, “Prevalence of Retinal Vein Occlusions and Estimated Cerebrospinal Fluid Pressure: The Kailuan Eye Study.” We agree with the authors that CSF pressure, in particular the perioptic subarachnoid space pressure, is likely important in the development of many cases of retinal vein occlusions. However, we were troubled by the methodology employed by the study team. While we appreciate the mention of our study that had found that formulae used to predict CSFP derived from clinical data were unable to accurately estimate CSF pressures, we were surprised that this formula was nonetheless used in the current study. Even more troubling is that the reference given for the justification of the formula, “eCSFP [mm Hg] = 0.44 * BMI [kg/m2] + 0.16 * DBP [mm Hg] – 0.18 * Age [years],” does not in fact explain its derivation. The Xie study from Critical Care used patientspecific anatomic measurements derived from MRI data in order to estimate CSFP, an important factor that has been excluded from the current study’s equation. CSF pressure is not static. It varies over time as a function of the production and resorption rate of CSF and body posture. A formula that is derived top down from preexisting data (such as BMI and DBP) is far from representing the complexity of CSF dynamics, including CSF pressure. Neither is CSF pressure and composition homogeneous throughout all CSF-containing spaces. Further, even if it could reflect the appropriate CSF pressure in the lumbar spine region, it is purely speculative to assume that this measurement could be extrapolated to the pressure within the subarachnoid space of the optic nerve. Several studies in patients with papilledema as well as normal tension glaucoma demonstrated “comparted” optic nerve sheaths, a finding that cautions even the assumption that the pressure measured at the lumber site reflects the pressure in the perioptic space. Thus, to assume that all CSF spaces connect via a linear continuum can be quite misleading. In conclusion, we are strongly supportive of research that will further the understanding of the cerebrospinal fluid’s role in ophthalmic disease. However, bad data are worse than no data. We would have expected that the limitations of such a study should have been clearly explained to the reader who may not be familiar with this complex topic, and we discourage the use of unvalidated formulae for CSF and ophthalmic research. Correspondence: David Fleischman Department of Ophthalmology, University of North Carolina at Chapel Hill, 5126 Bioinformatics Bldg #7040, Chapel Hill, NC, 27599-7040, USA Tel +1 919 259-9336 Fax +1 919 966-1908 Email david8fleischman@gmail.com
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用目前估计的脑脊液压力方程的研究不应进行和发表[信]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Eye and Brain
Eye and Brain OPHTHALMOLOGY-
CiteScore
7.90
自引率
2.30%
发文量
12
审稿时长
16 weeks
期刊介绍: Eye and Brain is an international, peer-reviewed, open access journal focusing on basic research, clinical findings, and expert reviews in the field of visual science and neuro-ophthalmology. The journal’s unique focus is the link between two well-known visual centres, the eye and the brain, with an emphasis on the importance of such connections. All aspects of clinical and especially basic research on the visual system are addressed within the journal as well as significant future directions in vision research and therapeutic measures. This unique journal focuses on neurological aspects of vision – both physiological and pathological. The scope of the journal spans from the cornea to the associational visual cortex and all the visual centers in between. Topics range from basic biological mechanisms to therapeutic treatment, from simple organisms to humans, and utilizing techniques from molecular biology to behavior. The journal especially welcomes primary research articles or review papers that make the connection between the eye and the brain. Specific areas covered in the journal include: Physiology and pathophysiology of visual centers, Eye movement disorders and strabismus, Cellular, biochemical, and molecular features of the visual system, Structural and functional organization of the eye and of the visual cortex, Metabolic demands of the visual system, Diseases and disorders with neuro-ophthalmic manifestations, Clinical and experimental neuro-ophthalmology and visual system pathologies, Epidemiological studies.
期刊最新文献
Peripapillary Retinal Nerve Fiber Layer (pRNFL) Thickness - A Novel Biomarker of Neurodegeneration in Late-Infantile CLN2 Disease. Correlations Between Disability Score, Optical Coherence Tomography and Microperimetry in Patients with Multiple Sclerosis. Impact of transcranial Direct Current Stimulation on stereoscopic vision and retinal structure in adult amblyopic rodents. Accuracy of Diagnosing Optic Neuritis Using DANTE T1-SPACE Imaging. Spotlight on Hemorrhagic Destruction of the Brain, Subependymal Calcification, and Congenital Cataracts (HDBSCC).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1