HDMF: Hierarchical Data Modeling Framework for Modern Science Data Standards.

Andrew J Tritt, Oliver Rübel, Benjamin Dichter, Ryan Ly, Donghe Kang, Edward F Chang, Loren M Frank, Kristofer Bouchard
{"title":"HDMF: Hierarchical Data Modeling Framework for Modern Science Data Standards.","authors":"Andrew J Tritt,&nbsp;Oliver Rübel,&nbsp;Benjamin Dichter,&nbsp;Ryan Ly,&nbsp;Donghe Kang,&nbsp;Edward F Chang,&nbsp;Loren M Frank,&nbsp;Kristofer Bouchard","doi":"10.1109/bigdata47090.2019.9005648","DOIUrl":null,"url":null,"abstract":"<p><p>A ubiquitous problem in aggregating data across different experimental and observational data sources is a lack of software infrastructure that enables flexible and extensible standardization of data and metadata. To address this challenge, we developed HDMF, a hierarchical data modeling framework for modern science data standards. With HDMF, we separate the process of data standardization into three main components: (1) data modeling and specification, (2) data I/O and storage, and (3) data interaction and data APIs. To enable standards to support the complex requirements and varying use cases throughout the data life cycle, HDMF provides object mapping infrastructure to insulate and integrate these various components. This approach supports the flexible development of data standards and extensions, optimized storage backends, and data APIs, while allowing the other components of the data standards ecosystem to remain stable. To meet the demands of modern, large-scale science data, HDMF provides advanced data I/O functionality for iterative data write, lazy data load, and parallel I/O. It also supports optimization of data storage via support for chunking, compression, linking, and modular data storage. We demonstrate the application of HDMF in practice to design NWB 2.0 [13], a modern data standard for collaborative science across the neurophysiology community.</p>","PeriodicalId":74501,"journal":{"name":"Proceedings : ... IEEE International Conference on Big Data. IEEE International Conference on Big Data","volume":" ","pages":"165-179"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/bigdata47090.2019.9005648","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings : ... IEEE International Conference on Big Data. IEEE International Conference on Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/bigdata47090.2019.9005648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/2/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A ubiquitous problem in aggregating data across different experimental and observational data sources is a lack of software infrastructure that enables flexible and extensible standardization of data and metadata. To address this challenge, we developed HDMF, a hierarchical data modeling framework for modern science data standards. With HDMF, we separate the process of data standardization into three main components: (1) data modeling and specification, (2) data I/O and storage, and (3) data interaction and data APIs. To enable standards to support the complex requirements and varying use cases throughout the data life cycle, HDMF provides object mapping infrastructure to insulate and integrate these various components. This approach supports the flexible development of data standards and extensions, optimized storage backends, and data APIs, while allowing the other components of the data standards ecosystem to remain stable. To meet the demands of modern, large-scale science data, HDMF provides advanced data I/O functionality for iterative data write, lazy data load, and parallel I/O. It also supports optimization of data storage via support for chunking, compression, linking, and modular data storage. We demonstrate the application of HDMF in practice to design NWB 2.0 [13], a modern data standard for collaborative science across the neurophysiology community.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
现代科学数据标准的层次数据建模框架。
在聚合不同实验和观测数据源的数据时,一个普遍存在的问题是缺乏能够实现数据和元数据的灵活和可扩展标准化的软件基础设施。为了应对这一挑战,我们开发了HDMF,这是一个用于现代科学数据标准的分层数据建模框架。使用HDMF,我们将数据标准化过程分为三个主要组件:(1)数据建模和规范,(2)数据I/O和存储,以及(3)数据交互和数据API。为了使标准能够在整个数据生命周期中支持复杂的需求和不同的用例,HDMF提供了对象映射基础设施来隔离和集成这些不同的组件。这种方法支持数据标准和扩展、优化的存储后端和数据API的灵活开发,同时允许数据标准生态系统的其他组件保持稳定。为了满足现代大规模科学数据的需求,HDMF提供了用于迭代数据写入、延迟数据加载和并行I/O的高级数据I/O功能。它还通过支持分块、压缩、链接和模块化数据存储来支持数据存储的优化。我们展示了HDMF在实践中的应用,以设计NWB 2.0[13],这是神经生理学界合作科学的现代数据标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Private Continuous Survival Analysis with Distributed Multi-Site Data. Zero-shot Learning with Minimum Instruction to Extract Social Determinants and Family History from Clinical Notes using GPT Model. Doctors vs. Nurses: Understanding the Great Divide in Vaccine Hesitancy among Healthcare Workers. Multi-Query Optimization Revisited: A Full-Query Algebraic Method. HPCGCN: A Predictive Framework on High Performance Computing Cluster Log Data Using Graph Convolutional Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1