OryzaGP 2021 update: a rice gene and protein dataset for named-entity recognition.

Q2 Agricultural and Biological Sciences Genomics and Informatics Pub Date : 2021-09-01 Epub Date: 2021-09-30 DOI:10.5808/gi.21015
Pierre Larmande, Yusha Liu, Xinzhi Yao, Jingbo Xia
{"title":"OryzaGP 2021 update: a rice gene and protein dataset for named-entity recognition.","authors":"Pierre Larmande,&nbsp;Yusha Liu,&nbsp;Xinzhi Yao,&nbsp;Jingbo Xia","doi":"10.5808/gi.21015","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the rapid evolution of high-throughput technologies, a tremendous amount of data is being produced in the biological domain, which poses a challenging task for information extraction and natural language understanding. Biological named entity recognition (NER) and named entity normalisation (NEN) are two common tasks aiming at identifying and linking biologically important entities such as genes or gene products mentioned in the literature to biological databases. In this paper, we present an updated version of OryzaGP, a gene and protein dataset for rice species created to help natural language processing (NLP) tools in processing NER and NEN tasks. To create the dataset, we selected more than 15,000 abstracts associated with articles previously curated for rice genes. We developed four dictionaries of gene and protein names associated with database identifiers. We used these dictionaries to annotate the dataset. We also annotated the dataset using pre-trained NLP models. Finally, we analysed the annotation results and discussed how to improve OryzaGP.</p>","PeriodicalId":36591,"journal":{"name":"Genomics and Informatics","volume":"19 3","pages":"e27"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510865/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5808/gi.21015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

Due to the rapid evolution of high-throughput technologies, a tremendous amount of data is being produced in the biological domain, which poses a challenging task for information extraction and natural language understanding. Biological named entity recognition (NER) and named entity normalisation (NEN) are two common tasks aiming at identifying and linking biologically important entities such as genes or gene products mentioned in the literature to biological databases. In this paper, we present an updated version of OryzaGP, a gene and protein dataset for rice species created to help natural language processing (NLP) tools in processing NER and NEN tasks. To create the dataset, we selected more than 15,000 abstracts associated with articles previously curated for rice genes. We developed four dictionaries of gene and protein names associated with database identifiers. We used these dictionaries to annotate the dataset. We also annotated the dataset using pre-trained NLP models. Finally, we analysed the annotation results and discussed how to improve OryzaGP.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OryzaGP 2021更新:用于命名实体识别的水稻基因和蛋白质数据集。
由于高通量技术的快速发展,生物领域产生了大量的数据,这对信息提取和自然语言理解提出了挑战。生物学命名实体识别(NER)和命名实体规范化(NEN)是两个常见的任务,旨在识别和连接生物学上重要的实体,如文献中提到的基因或基因产物到生物学数据库。在本文中,我们提出了一个更新版本的OryzaGP,这是一个水稻物种的基因和蛋白质数据集,旨在帮助自然语言处理(NLP)工具处理NER和NEN任务。为了创建这个数据集,我们选择了15000多篇与以前为水稻基因整理的文章相关的摘要。我们开发了四个与数据库标识符相关的基因和蛋白质名称字典。我们使用这些字典来注释数据集。我们还使用预训练的NLP模型对数据集进行了注释。最后,对OryzaGP的标注结果进行了分析,并对如何改进OryzaGP进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genomics and Informatics
Genomics and Informatics Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Gut metagenomic analysis of gastric cancer patients reveals Akkermansia, Gammaproteobacteria, and Veillonella microbiota as potential non-invasive biomarkers COVID-19 progression towards ARDS: a genome wide study reveals host factors underlying critical COVID-19. Bioinformatic analyses reveal the prognostic significance and potential role of ankyrin 3 (ANK3) in kidney renal clear cell carcinoma. Comparison of digital PCR platforms using the molecular marker. Single-cell RNA sequencing identifies distinct transcriptomic signatures between PMA/ionomycin- and αCD3/αCD28-activated primary human T cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1