Annemiek F Hoogerwaard, Ahmet Adiyaman, Mark R de Jong, Jaap-Jan J Smit, Jan-Evert Heeg, Boudewijn A A M van Hasselt, Arif Elvan
{"title":"Renal nerve stimulation: complete versus incomplete renal sympathetic denervation.","authors":"Annemiek F Hoogerwaard, Ahmet Adiyaman, Mark R de Jong, Jaap-Jan J Smit, Jan-Evert Heeg, Boudewijn A A M van Hasselt, Arif Elvan","doi":"10.1080/08037051.2021.1982376","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Blood pressure (BP) reduction after renal sympathetic denervation (RDN) is highly variable. Renal nerve stimulation (RNS) can localize sympathetic nerves. The RNS trial aimed to investigate the medium-term BP-lowering effects of the use of RNS during RDN, and explore if RNS can check the completeness of the denervation.</p><p><strong>Material and methods: </strong>Forty-four treatment-resistant hypertensive patients were included in the prospective, single-center RNS trial. The primary study endpoint was change in 24-h BP at 6- to 12-month follow-up after RDN. The secondary study endpoints were the acute procedural RNS-induced BP response before and after RDN; number of antihypertensive drugs at follow-up; and the correlation between the RNS-induced BP increase before versus after RDN (delta [Δ] RNS-induced BP).</p><p><strong>Results: </strong>Before RDN, the RNS-induced systolic BP rise was 43(±21) mmHg, and decreased to 9(±12) mmHg after RDN (<i>p</i> < 0.001). Mean 24-h systolic/diastolic BP decreased from 147(±12)/82(±11) mmHg at baseline to 135(±11)/76(±10) mmHg (<i>p</i> < 0.001/<0.001) at follow-up (10 [6-12] months), with 1 antihypertensive drug less compared to baseline. The Δ RNS-induced BP and the 24-h BP decrease at follow-up were correlated for systolic (<i>R</i> = 0.44, <i>p</i> = 0.004) and diastolic (<i>R</i> = 0.48, <i>p</i> = 0.003) BP. Patients with ≤0 mmHg residual RNS-induced BP response after RDN had a significant lower mean 24-h systolic BP at follow-up compared to the patients with >0 mmHg residual RNS-induced BP response (126 ± 4 mmHg versus 135 ± 10 mmHg, <i>p</i> = 0.04). 83% of the patients with ≤0 mmHg residual RNS-induced BP response had normal 24-h BP at follow-up, compared to 33% in the patients with >0 mmHg residual RNS-induced BP response (<i>p</i> = 0.023).</p><p><strong>Conclusion: </strong>The use of RNS during RDN leads to clinically significant and sustained lowering of 24-h BP with fewer antihypertensive drugs at follow-up. RNS-induced BP changes were correlated with 24-h BP changes at follow-up. Moreover, patients with complete denervation had significant lower BP compared to the patients with incomplete denervation.</p>","PeriodicalId":9000,"journal":{"name":"Blood Pressure","volume":" ","pages":"376-385"},"PeriodicalIF":1.8000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood Pressure","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08037051.2021.1982376","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Purpose: Blood pressure (BP) reduction after renal sympathetic denervation (RDN) is highly variable. Renal nerve stimulation (RNS) can localize sympathetic nerves. The RNS trial aimed to investigate the medium-term BP-lowering effects of the use of RNS during RDN, and explore if RNS can check the completeness of the denervation.
Material and methods: Forty-four treatment-resistant hypertensive patients were included in the prospective, single-center RNS trial. The primary study endpoint was change in 24-h BP at 6- to 12-month follow-up after RDN. The secondary study endpoints were the acute procedural RNS-induced BP response before and after RDN; number of antihypertensive drugs at follow-up; and the correlation between the RNS-induced BP increase before versus after RDN (delta [Δ] RNS-induced BP).
Results: Before RDN, the RNS-induced systolic BP rise was 43(±21) mmHg, and decreased to 9(±12) mmHg after RDN (p < 0.001). Mean 24-h systolic/diastolic BP decreased from 147(±12)/82(±11) mmHg at baseline to 135(±11)/76(±10) mmHg (p < 0.001/<0.001) at follow-up (10 [6-12] months), with 1 antihypertensive drug less compared to baseline. The Δ RNS-induced BP and the 24-h BP decrease at follow-up were correlated for systolic (R = 0.44, p = 0.004) and diastolic (R = 0.48, p = 0.003) BP. Patients with ≤0 mmHg residual RNS-induced BP response after RDN had a significant lower mean 24-h systolic BP at follow-up compared to the patients with >0 mmHg residual RNS-induced BP response (126 ± 4 mmHg versus 135 ± 10 mmHg, p = 0.04). 83% of the patients with ≤0 mmHg residual RNS-induced BP response had normal 24-h BP at follow-up, compared to 33% in the patients with >0 mmHg residual RNS-induced BP response (p = 0.023).
Conclusion: The use of RNS during RDN leads to clinically significant and sustained lowering of 24-h BP with fewer antihypertensive drugs at follow-up. RNS-induced BP changes were correlated with 24-h BP changes at follow-up. Moreover, patients with complete denervation had significant lower BP compared to the patients with incomplete denervation.
Blood PressureMedicine-Cardiology and Cardiovascular Medicine
CiteScore
3.20
自引率
5.60%
发文量
41
期刊介绍:
For outstanding coverage of the latest advances in hypertension research, turn to Blood Pressure, a primary source for authoritative and timely information on all aspects of hypertension research and management.
Features include:
• Physiology and pathophysiology of blood pressure regulation
• Primary and secondary hypertension
• Cerebrovascular and cardiovascular complications of hypertension
• Detection, treatment and follow-up of hypertension
• Non pharmacological and pharmacological management
• Large outcome trials in hypertension.