Multi-focus Image Fusion for Confocal Microscopy Using U-Net Regression Map.

Maruf Hossain Shuvo, Yasmin M Kassim, Filiz Bunyak, Olga V Glinskii, Leike Xie, Vladislav V Glinsky, Virginia H Huxley, Mahesh M Thakkar, Kannappan Palaniappan
{"title":"Multi-focus Image Fusion for Confocal Microscopy Using U-Net Regression Map.","authors":"Maruf Hossain Shuvo, Yasmin M Kassim, Filiz Bunyak, Olga V Glinskii, Leike Xie, Vladislav V Glinsky, Virginia H Huxley, Mahesh M Thakkar, Kannappan Palaniappan","doi":"10.1109/icpr48806.2021.9412122","DOIUrl":null,"url":null,"abstract":"<p><p>Characterizing the spatial relationship between blood vessel and lymphatic vascular structures, in the mice dura mater tissue, is useful for modeling fluid flows and changes in dynamics in various disease processes. We propose a new deep learning-based approach to fuse a set of multi-channel single-focus microscopy images within each volumetric z-stack into a single fused image that accurately captures as much of the vascular structures as possible. The red spectral channel captures small blood vessels and the green fluorescence channel images lymphatics structures in the intact dura mater attached to bone. The deep architecture Multi-Channel Fusion U-Net (MCFU-Net) combines multi-slice regression likelihood maps of thin linear structures using max pooling for each channel independently to estimate a slice-based focus selection map. We compare MCFU-Net with a widely used derivative-based multi-scale Hessian fusion method [8]. The multi-scale Hessian-based fusion produces dark-halos, non-homogeneous backgrounds and less detailed anatomical structures. Perception based no-reference image quality assessment metrics PIQUE, NIQE, and BRISQUE confirm the effectiveness of the proposed method.</p>","PeriodicalId":74516,"journal":{"name":"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition","volume":" ","pages":"4317-4323"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8513773/pdf/nihms-1685783.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icpr48806.2021.9412122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Characterizing the spatial relationship between blood vessel and lymphatic vascular structures, in the mice dura mater tissue, is useful for modeling fluid flows and changes in dynamics in various disease processes. We propose a new deep learning-based approach to fuse a set of multi-channel single-focus microscopy images within each volumetric z-stack into a single fused image that accurately captures as much of the vascular structures as possible. The red spectral channel captures small blood vessels and the green fluorescence channel images lymphatics structures in the intact dura mater attached to bone. The deep architecture Multi-Channel Fusion U-Net (MCFU-Net) combines multi-slice regression likelihood maps of thin linear structures using max pooling for each channel independently to estimate a slice-based focus selection map. We compare MCFU-Net with a widely used derivative-based multi-scale Hessian fusion method [8]. The multi-scale Hessian-based fusion produces dark-halos, non-homogeneous backgrounds and less detailed anatomical structures. Perception based no-reference image quality assessment metrics PIQUE, NIQE, and BRISQUE confirm the effectiveness of the proposed method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 U-Net 回归图实现共焦显微镜的多焦点图像融合
描述小鼠硬脑膜组织中血管和淋巴管结构之间的空间关系有助于模拟各种疾病过程中的流体流动和动态变化。我们提出了一种基于深度学习的新方法,将每个容积 Z 叠中的一组多通道单焦距显微镜图像融合为一张融合图像,尽可能准确地捕捉血管结构。红色光谱通道捕捉小血管,绿色荧光通道拍摄附着在骨骼上的完整硬脑膜淋巴管结构。深度架构多通道融合 U-Net(MCFU-Net)结合了薄线性结构的多切片回归似然图,使用每个通道独立的最大池化来估计基于切片的病灶选择图。我们将 MCFU-Net 与广泛使用的基于导数的多尺度 Hessian 融合方法[8]进行了比较。基于多尺度 Hessian 的融合方法会产生暗晕、非均匀背景和不太详细的解剖结构。基于感知的无参考图像质量评估指标 PIQUE、NIQE 和 BRISQUE 证实了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊最新文献
Complexity of Representations in Deep Learning Extraction of Ruler Markings For Estimating Physical Size of Oral Lesions. TensorMixup Data Augmentation Method for Fully Automatic Brain Tumor Segmentation Classifying Breast Histopathology Images with a Ductal Instance-Oriented Pipeline. Directionally Paired Principal Component Analysis for Bivariate Estimation Problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1