Monte Carlo Simulation Approaches for Quantitative Bias Analysis: A Tutorial.

IF 5.2 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Epidemiologic Reviews Pub Date : 2022-01-14 DOI:10.1093/epirev/mxab012
Hailey R Banack, Eleanor Hayes-Larson, Elizabeth Rose Mayeda
{"title":"Monte Carlo Simulation Approaches for Quantitative Bias Analysis: A Tutorial.","authors":"Hailey R Banack,&nbsp;Eleanor Hayes-Larson,&nbsp;Elizabeth Rose Mayeda","doi":"10.1093/epirev/mxab012","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative bias analysis can be used to empirically assess how far study estimates are from the truth (i.e., an estimate that is free of bias). These methods can be used to explore the potential impact of confounding bias, selection bias (collider stratification bias), and information bias. Quantitative bias analysis includes methods that can be used to check the robustness of study findings to multiple types of bias and methods that use simulation studies to generate data and understand the hypothetical impact of specific types of bias in a simulated data set. In this article, we review 2 strategies for quantitative bias analysis: 1) traditional probabilistic quantitative bias analysis and 2) quantitative bias analysis with generated data. An important difference between the 2 strategies relates to the type of data (real vs. generated data) used in the analysis. Monte Carlo simulations are used in both approaches, but the simulation process is used for different purposes in each. For both approaches, we outline and describe the steps required to carry out the quantitative bias analysis and also present a bias-analysis tutorial demonstrating how both approaches can be applied in the context of an analysis for selection bias. Our goal is to highlight the utility of quantitative bias analysis for practicing epidemiologists and increase the use of these methods in the epidemiologic literature.</p>","PeriodicalId":50510,"journal":{"name":"Epidemiologic Reviews","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9005059/pdf/mxab012.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiologic Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/epirev/mxab012","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 6

Abstract

Quantitative bias analysis can be used to empirically assess how far study estimates are from the truth (i.e., an estimate that is free of bias). These methods can be used to explore the potential impact of confounding bias, selection bias (collider stratification bias), and information bias. Quantitative bias analysis includes methods that can be used to check the robustness of study findings to multiple types of bias and methods that use simulation studies to generate data and understand the hypothetical impact of specific types of bias in a simulated data set. In this article, we review 2 strategies for quantitative bias analysis: 1) traditional probabilistic quantitative bias analysis and 2) quantitative bias analysis with generated data. An important difference between the 2 strategies relates to the type of data (real vs. generated data) used in the analysis. Monte Carlo simulations are used in both approaches, but the simulation process is used for different purposes in each. For both approaches, we outline and describe the steps required to carry out the quantitative bias analysis and also present a bias-analysis tutorial demonstrating how both approaches can be applied in the context of an analysis for selection bias. Our goal is to highlight the utility of quantitative bias analysis for practicing epidemiologists and increase the use of these methods in the epidemiologic literature.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
定量偏差分析的蒙特卡罗模拟方法:教程。
定量偏倚分析可用于经验性地评估研究估计与事实的距离(即,无偏倚的估计)。这些方法可用于探索混杂偏倚、选择偏倚(对撞机分层偏倚)和信息偏倚的潜在影响。定量偏倚分析包括可用于检查研究结果对多种类型偏倚的稳健性的方法,以及使用模拟研究来生成数据并了解特定类型偏倚在模拟数据集中的假设影响的方法。在本文中,我们回顾了定量偏差分析的两种策略:1)传统的概率定量偏差分析和2)生成数据定量偏差分析。这两种策略之间的一个重要区别与分析中使用的数据类型(真实数据与生成数据)有关。两种方法都使用蒙特卡罗模拟,但每种方法的模拟过程用于不同的目的。对于这两种方法,我们概述并描述了进行定量偏倚分析所需的步骤,并提供了一个偏倚分析教程,展示了如何将这两种方法应用于选择偏倚分析的背景下。我们的目标是强调定量偏倚分析对执业流行病学家的效用,并在流行病学文献中增加这些方法的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Epidemiologic Reviews
Epidemiologic Reviews 医学-公共卫生、环境卫生与职业卫生
CiteScore
8.10
自引率
0.00%
发文量
10
期刊介绍: Epidemiologic Reviews is a leading review journal in public health. Published once a year, issues collect review articles on a particular subject. Recent issues have focused on The Obesity Epidemic, Epidemiologic Research on Health Disparities, and Epidemiologic Approaches to Global Health.
期刊最新文献
A systematic review of lethal means safety counseling interventions: impacts on safety behaviors and self-directed violence. Instruments for racial health equity: a scoping review of structural racism measurement, 2019-2021. A review of the epidemiology of invasive fungal infections in Asian patients with hematological malignancies (2011-2021). The effect of post-traumatic chondropathy on the functional state of knee joints in athletes during the basketball game. The measurement of racism in health inequities research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1