Bayesian dynamic network actor models with application to South Korean COVID-19 patient movement data.

Pub Date : 2021-01-01 Epub Date: 2021-10-22 DOI:10.1007/s10260-021-00599-x
Antonio Mario Arrizza, Alberto Caimo
{"title":"Bayesian dynamic network actor models with application to South Korean COVID-19 patient movement data.","authors":"Antonio Mario Arrizza,&nbsp;Alberto Caimo","doi":"10.1007/s10260-021-00599-x","DOIUrl":null,"url":null,"abstract":"<p><p>Motivated by the ongoing COVID-19 pandemic, this article introduces Bayesian dynamic network actor models for the analysis of infected individuals' movements in South Korea during the first three months of 2020. The relational event data modelling framework makes use of network statistics capturing the structure of movement events from and to several country's municipalities. The fully probabilistic Bayesian approach allows to quantify the uncertainty associated to the relational tendencies explaining where and when movement events are established and where they are directed. The observed patient movements' patterns at an early stage of the pandemic can provide interesting insights about the spread of the disease in the Asian country.</p>","PeriodicalId":74868,"journal":{"name":"","volume":"30 5","pages":"1465-1483"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8531917/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10260-021-00599-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by the ongoing COVID-19 pandemic, this article introduces Bayesian dynamic network actor models for the analysis of infected individuals' movements in South Korea during the first three months of 2020. The relational event data modelling framework makes use of network statistics capturing the structure of movement events from and to several country's municipalities. The fully probabilistic Bayesian approach allows to quantify the uncertainty associated to the relational tendencies explaining where and when movement events are established and where they are directed. The observed patient movements' patterns at an early stage of the pandemic can provide interesting insights about the spread of the disease in the Asian country.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝叶斯动态网络行动者模型及其在韩国COVID-19患者运动数据中的应用。
本文以新冠肺炎疫情为背景,引入贝叶斯动态网络行动者模型,分析2020年前3个月韩国国内感染个体的流动情况。关系事件数据建模框架利用网络统计数据捕获来自和到达几个国家市政当局的移动事件的结构。完全概率贝叶斯方法允许量化与关系趋势相关的不确定性,解释运动事件建立的地点和时间以及它们的方向。观察到的患者在大流行早期阶段的运动模式可以为该疾病在亚洲国家的传播提供有趣的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1