Xuankun Li, Ryan St Laurent, Chandra Earl, Camiel Doorenweerd, Erik J. van Nieukerken, Donald R. Davis, Chris A. Johns, Atsushi Kawakita, Shigeki Kobayashi, Andreas Zwick, Carlos Lopez-Vaamonde, Issei Ohshima, Akito Y. Kawahara
{"title":"Phylogeny of gracillariid leaf-mining moths: evolution of larval behaviour inferred from phylogenomic and Sanger data","authors":"Xuankun Li, Ryan St Laurent, Chandra Earl, Camiel Doorenweerd, Erik J. van Nieukerken, Donald R. Davis, Chris A. Johns, Atsushi Kawakita, Shigeki Kobayashi, Andreas Zwick, Carlos Lopez-Vaamonde, Issei Ohshima, Akito Y. Kawahara","doi":"10.1111/cla.12490","DOIUrl":null,"url":null,"abstract":"<p>Gracillariidae is the most taxonomically diverse cosmopolitan leaf-mining moth family, consisting of nearly 2000 named species in 105 described genera, classified into eight extant subfamilies. The majority of gracillariid species are internal plant feeders as larvae, creating mines and galls in plant tissue. Despite their diversity and ecological adaptations, their phylogenetic relationships, especially among subfamilies, remain uncertain. Genomic data (83 taxa, 589 loci) were integrated with Sanger data (130 taxa, 22 loci), to reconstruct a phylogeny of Gracillariidae. Based on analyses of both datasets combined and analyzed separately, monophyly of Gracillariidae and all its subfamilies, monophyly of the clade “LAMPO” (subfamilies: Lithocolletinae, Acrocercopinae, Marmarinae, Phyllocnistinae, and Oecophyllembiinae) and relationships of its subclade “AMO” (subfamilies: Acrocercopinae, Marmarinae, and Oecophyllembiinae) were strongly supported. A sister-group relationship of Ornixolinae to the remainder of the family, and a monophyletic leaf roller lineage (<i>Callicercops</i> Vári + Parornichinae) + Gracillariinae, as sister to the “LAMPO” clade were supported by the most likely tree. Dating analyses indicate a mid-Cretaceous (105.3 Ma) origin of the family, followed by a rapid diversification into the nine subfamilies predating the Cretaceous–Palaeogene extinction. We hypothesize that advanced larval behaviours, such as making keeled or tentiform blotch mines, rolling leaves and galling, allowed gracillariids to better avoid larval parasitoids allowing them to further diversify. Finally, we stabilize the classification by formally re-establishing the subfamily ranks of Marmarinae <b>stat.rev</b>., Oecophyllembiinae <b>stat.rev</b>. and Parornichinae <b>stat.rev</b>., and erect a new subfamily, Callicercopinae Li, Ohshima and Kawahara to accommodate the enigmatic genus <i>Callicercops</i>.</p>","PeriodicalId":50688,"journal":{"name":"Cladistics","volume":"38 3","pages":"277-300"},"PeriodicalIF":3.9000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cladistics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cla.12490","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 10
Abstract
Gracillariidae is the most taxonomically diverse cosmopolitan leaf-mining moth family, consisting of nearly 2000 named species in 105 described genera, classified into eight extant subfamilies. The majority of gracillariid species are internal plant feeders as larvae, creating mines and galls in plant tissue. Despite their diversity and ecological adaptations, their phylogenetic relationships, especially among subfamilies, remain uncertain. Genomic data (83 taxa, 589 loci) were integrated with Sanger data (130 taxa, 22 loci), to reconstruct a phylogeny of Gracillariidae. Based on analyses of both datasets combined and analyzed separately, monophyly of Gracillariidae and all its subfamilies, monophyly of the clade “LAMPO” (subfamilies: Lithocolletinae, Acrocercopinae, Marmarinae, Phyllocnistinae, and Oecophyllembiinae) and relationships of its subclade “AMO” (subfamilies: Acrocercopinae, Marmarinae, and Oecophyllembiinae) were strongly supported. A sister-group relationship of Ornixolinae to the remainder of the family, and a monophyletic leaf roller lineage (Callicercops Vári + Parornichinae) + Gracillariinae, as sister to the “LAMPO” clade were supported by the most likely tree. Dating analyses indicate a mid-Cretaceous (105.3 Ma) origin of the family, followed by a rapid diversification into the nine subfamilies predating the Cretaceous–Palaeogene extinction. We hypothesize that advanced larval behaviours, such as making keeled or tentiform blotch mines, rolling leaves and galling, allowed gracillariids to better avoid larval parasitoids allowing them to further diversify. Finally, we stabilize the classification by formally re-establishing the subfamily ranks of Marmarinae stat.rev., Oecophyllembiinae stat.rev. and Parornichinae stat.rev., and erect a new subfamily, Callicercopinae Li, Ohshima and Kawahara to accommodate the enigmatic genus Callicercops.
期刊介绍:
Cladistics publishes high quality research papers on systematics, encouraging debate on all aspects of the field, from philosophy, theory and methodology to empirical studies and applications in biogeography, coevolution, conservation biology, ontogeny, genomics and paleontology.
Cladistics is read by scientists working in the research fields of evolution, systematics and integrative biology and enjoys a consistently high position in the ISI® rankings for evolutionary biology.