Glycosylation of Plant-Produced Immunoglobulins.

Kathrin Göritzer, Richard Strasser
{"title":"Glycosylation of Plant-Produced Immunoglobulins.","authors":"Kathrin Göritzer, Richard Strasser","doi":"10.1007/978-3-030-76912-3_16","DOIUrl":null,"url":null,"abstract":"<p><p>Many economically important protein-based therapeutics like monoclonal antibodies are glycosylated. Due to the recognized importance of this type of posttranslational modification, glycoengineering of expression systems to obtain highly active and homogenous therapeutics is an emerging field. Although most of the monoclonal antibodies on the market are still produced in mammalian expression platforms, plants are emerging as an alternative cost-effective and scalable production platform that allows precise engineering of glycosylation to produce targeted human glycoforms at large homogeneity. Apart from producing more effective antibodies, pure glycoforms are required in efforts to link biological functions to specific glycan structures. Much is already known about the role of IgG1 glycosylation and this antibody class is the dominant recombinant format that has been expressed in plants. By contrast, little attention has been paid to the glycoengineering of recombinant IgG subtypes and the other four classes of human immunoglobulins (IgA, IgD, IgE, and IgM). Except for IgD, all these antibody classes have been expressed in plants and the glycosylation has been analyzed in a site-specific manner. Here, we summarize the current data on glycosylation of plant-produced monoclonal antibodies and discuss the findings in the light of known functions for these glycans.</p>","PeriodicalId":36906,"journal":{"name":"Experientia supplementum (2012)","volume":"112 ","pages":"519-543"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experientia supplementum (2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-76912-3_16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Many economically important protein-based therapeutics like monoclonal antibodies are glycosylated. Due to the recognized importance of this type of posttranslational modification, glycoengineering of expression systems to obtain highly active and homogenous therapeutics is an emerging field. Although most of the monoclonal antibodies on the market are still produced in mammalian expression platforms, plants are emerging as an alternative cost-effective and scalable production platform that allows precise engineering of glycosylation to produce targeted human glycoforms at large homogeneity. Apart from producing more effective antibodies, pure glycoforms are required in efforts to link biological functions to specific glycan structures. Much is already known about the role of IgG1 glycosylation and this antibody class is the dominant recombinant format that has been expressed in plants. By contrast, little attention has been paid to the glycoengineering of recombinant IgG subtypes and the other four classes of human immunoglobulins (IgA, IgD, IgE, and IgM). Except for IgD, all these antibody classes have been expressed in plants and the glycosylation has been analyzed in a site-specific manner. Here, we summarize the current data on glycosylation of plant-produced monoclonal antibodies and discuss the findings in the light of known functions for these glycans.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植物免疫球蛋白的糖基化。
许多经济上重要的基于蛋白质的治疗方法,如单克隆抗体,都是糖基化的。由于这种类型的翻译后修饰的重要性得到了认可,表达系统的糖工程以获得高活性和同质的治疗方法是一个新兴领域。尽管市场上的大多数单克隆抗体仍在哺乳动物表达平台中生产,但植物正在成为一种具有成本效益和可扩展性的替代生产平台,它允许糖基化的精确工程,以大的同质性生产靶向人类糖型。除了产生更有效的抗体外,还需要纯的糖型来将生物功能与特定的聚糖结构联系起来。关于IgG1糖基化的作用已经有很多已知,并且这种抗体类是已经在植物中表达的主要重组形式。相反,重组IgG亚型和其他四类人类免疫球蛋白(IgA、IgD、IgE和IgM)的糖工程很少受到关注。除IgD外,所有这些抗体类别都在植物中表达,并以位点特异性的方式分析了糖基化。在这里,我们总结了植物产生的单克隆抗体糖基化的最新数据,并根据这些聚糖的已知功能讨论了这些发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experientia supplementum (2012)
Experientia supplementum (2012) Medicine-Medicine (all)
CiteScore
3.30
自引率
0.00%
发文量
24
期刊最新文献
Mechanics of Microsporidian Polar Tube Firing. The Function and Structure of the Microsporidia Polar Tube. Insights from C. elegans into Microsporidia Biology and Host-Pathogen Relationships. Monoclonal Antibodies to CTLA-4 with Focus on Ipilimumab. Tumor-Infiltrating Lymphocytes and Their Role in Solid Tumor Progression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1