Jacob H Cole, Scott B Hughey, Phillip G Geiger, Kamala J Rapp-Santos, Gregory J Booth
{"title":"Hemodynamic Effects of Cardiovascular Medications in a Normovolemic and Hemorrhaged Yorkshire-cross Swine Model.","authors":"Jacob H Cole, Scott B Hughey, Phillip G Geiger, Kamala J Rapp-Santos, Gregory J Booth","doi":"10.30802/AALAS-CM-21-000080","DOIUrl":null,"url":null,"abstract":"<p><p>The Yorkshire-cross swine model is a valuable translational model commonly used to study cardiovascular physiology and response to insult. Although the effects of vasoactive medications have been well described in healthy swine, the effects of these medications during hemorrhagic shock are less studied. In this study, we sought to expand the utility of the swine model by characterizing the hemodynamic changes that occurred after the administration of commonly available vasoactive medications during euvolemic and hypovolemic states. To this end, we anesthetized and established femoral arterial, central venous, and pulmonary arterial access in 15 juvenile Yorkshire-cross pigs. The pigs then received a series of rapidly metabolized but highly vasoactive medications in a standard dosing sequence. After completion of this sequence, each pig underwent a 30-mL/kg hemorrhage over 10 min, and the standard dosing sequence was repeated. We then used standard sta- tistical techniques to compare the effects of these vasoactive medications on a variety of hemodynamic parameters between the euvolemic and hemorrhagic states. All subjects completed the study protocol. The responses in the hemorrhagic state were often attenuated or even opposite of those in the euvolemic state. For example, phenylephrine decreased the mean arterial blood pressure during the euvolemic state but increased it in the hemorrhagic state. These results clarify previously poorly defined responses to commonly used vasoactive agents during the hemorrhagic state in swine. Our findings also demonstrate the need to consider the complex and dynamic physiologic state of hemorrhage when anticipating the effects of vasoactive drugs and planning study protocols.</p>","PeriodicalId":10659,"journal":{"name":"Comparative medicine","volume":"72 1","pages":"38-44"},"PeriodicalIF":1.3000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8915414/pdf/cm2022000038.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.30802/AALAS-CM-21-000080","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Yorkshire-cross swine model is a valuable translational model commonly used to study cardiovascular physiology and response to insult. Although the effects of vasoactive medications have been well described in healthy swine, the effects of these medications during hemorrhagic shock are less studied. In this study, we sought to expand the utility of the swine model by characterizing the hemodynamic changes that occurred after the administration of commonly available vasoactive medications during euvolemic and hypovolemic states. To this end, we anesthetized and established femoral arterial, central venous, and pulmonary arterial access in 15 juvenile Yorkshire-cross pigs. The pigs then received a series of rapidly metabolized but highly vasoactive medications in a standard dosing sequence. After completion of this sequence, each pig underwent a 30-mL/kg hemorrhage over 10 min, and the standard dosing sequence was repeated. We then used standard sta- tistical techniques to compare the effects of these vasoactive medications on a variety of hemodynamic parameters between the euvolemic and hemorrhagic states. All subjects completed the study protocol. The responses in the hemorrhagic state were often attenuated or even opposite of those in the euvolemic state. For example, phenylephrine decreased the mean arterial blood pressure during the euvolemic state but increased it in the hemorrhagic state. These results clarify previously poorly defined responses to commonly used vasoactive agents during the hemorrhagic state in swine. Our findings also demonstrate the need to consider the complex and dynamic physiologic state of hemorrhage when anticipating the effects of vasoactive drugs and planning study protocols.
期刊介绍:
Comparative Medicine (CM), an international journal of comparative and experimental medicine, is the leading English-language publication in the field and is ranked by the Science Citation Index in the upper third of all scientific journals. The mission of CM is to disseminate high-quality, peer-reviewed information that expands biomedical knowledge and promotes human and animal health through the study of laboratory animal disease, animal models of disease, and basic biologic mechanisms related to disease in people and animals.