A.K.S. Romasanta , P.C. van der Sijde , M.J. Smit , I.J.P. de Esch , W. Jahnke , J.E. van Muijlwijk-Koezen
{"title":"Career development in fragment-based drug discovery","authors":"A.K.S. Romasanta , P.C. van der Sijde , M.J. Smit , I.J.P. de Esch , W. Jahnke , J.E. van Muijlwijk-Koezen","doi":"10.1016/j.ddtec.2020.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>The pharmaceutical industry is highly reliant on researchers who not only possess the technical knowledge but also the professional skills to collaborate in drug development. To prepare future practitioners to thrive in this interdisciplinary environment, Innovative Training Networks (ITNs) have become increasingly important in doctoral training. In this piece, we explore the benefits of these ITNs in training future practitioners in drug discovery. Through a bibliometric review, we find that the top researchers in fragment-based drug discovery have a high degree of collaboration and mobility across institutes. We then investigate which aspects of the ITN training program enable PhD students to gain these skills. We find that secondments, the short-term stays that students have in partner research institutes, are useful in preparing students to have both broad knowledge of drug discovery and specialization in their field of interest. Aside from imparting technical skills, we find that the collaborative environment in ITNs enables students to communicate better and to work effectively in teams. Doctoral students benefit by being exposed to relevant experiences that they can later apply as they navigate through the complex web of relationships and competencies in the industry. We conclude by recommending best practices to further improve ITNs in the training of future practitioners.</p></div>","PeriodicalId":36012,"journal":{"name":"Drug Discovery Today: Technologies","volume":"37 ","pages":"Pages 107-116"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ddtec.2020.10.001","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today: Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1740674920300184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 2
Abstract
The pharmaceutical industry is highly reliant on researchers who not only possess the technical knowledge but also the professional skills to collaborate in drug development. To prepare future practitioners to thrive in this interdisciplinary environment, Innovative Training Networks (ITNs) have become increasingly important in doctoral training. In this piece, we explore the benefits of these ITNs in training future practitioners in drug discovery. Through a bibliometric review, we find that the top researchers in fragment-based drug discovery have a high degree of collaboration and mobility across institutes. We then investigate which aspects of the ITN training program enable PhD students to gain these skills. We find that secondments, the short-term stays that students have in partner research institutes, are useful in preparing students to have both broad knowledge of drug discovery and specialization in their field of interest. Aside from imparting technical skills, we find that the collaborative environment in ITNs enables students to communicate better and to work effectively in teams. Doctoral students benefit by being exposed to relevant experiences that they can later apply as they navigate through the complex web of relationships and competencies in the industry. We conclude by recommending best practices to further improve ITNs in the training of future practitioners.
期刊介绍:
Discovery Today: Technologies compares different technological tools and techniques used from the discovery of new drug targets through to the launch of new medicines.