Chuang Wang, Jinsoo Uh, Thomas E Merchant, Chia-Ho Hua, Sahaja Acharya
{"title":"Facilitating MR-Guided Adaptive Proton Therapy in Children Using Deep Learning-Based Synthetic CT.","authors":"Chuang Wang, Jinsoo Uh, Thomas E Merchant, Chia-Ho Hua, Sahaja Acharya","doi":"10.14338/IJPT-20-00099.1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To determine whether self-attention cycle-generative adversarial networks (cycle-GANs), a novel deep-learning method, can generate accurate synthetic computed tomography (sCT) to facilitate adaptive proton therapy in children with brain tumors.</p><p><strong>Materials and methods: </strong>Both CT and T1-weighted magnetic resonance imaging (MRI) of 125 children (ages 1-20 years) with brain tumors were included in the training dataset. A model introducing a self-attention mechanism into the conventional cycle-GAN was created to enhance tissue interfaces and reduce noise. The test dataset consisted of 7 patients (ages 2-14 years) who underwent adaptive planning because of changes in anatomy discovered on MRI during proton therapy. The MRI during proton therapy-based sCT was compared with replanning CT (ground truth).</p><p><strong>Results: </strong>The Hounsfield unit-mean absolute error was significantly reduced with self-attention cycle-GAN, as compared with conventional cycle-GAN (65.3 ± 13.9 versus 88.9 ± 19.3, <i>P</i> < .01). The average 3-dimensional gamma passing rates (2%/2 mm criteria) for the original plan on the anatomy of the day and for the adapted plan were high (97.6% ± 1.2% and 98.9 ± 0.9%, respectively) when using sCT generated by self-attention cycle-GAN. The mean absolute differences in clinical target volume (CTV) receiving 95% of the prescription dose and 80% distal falloff along the beam axis were 1.1% ± 0.8% and 1.1 ± 0.9 mm, respectively. Areas of greatest dose difference were distal to the CTV and corresponded to shifts in distal falloff. Plan adaptation was appropriately triggered in all test patients when using sCT.</p><p><strong>Conclusion: </strong>The novel cycle-GAN model with self-attention outperforms conventional cycle-GAN for children with brain tumors. Encouraging dosimetric results suggest that sCT generation can be used to identify patients who would benefit from adaptive replanning.</p>","PeriodicalId":36923,"journal":{"name":"International Journal of Particle Therapy","volume":"8 3","pages":"11-20"},"PeriodicalIF":2.1000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8768893/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Particle Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14338/IJPT-20-00099.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 5
Abstract
Purpose: To determine whether self-attention cycle-generative adversarial networks (cycle-GANs), a novel deep-learning method, can generate accurate synthetic computed tomography (sCT) to facilitate adaptive proton therapy in children with brain tumors.
Materials and methods: Both CT and T1-weighted magnetic resonance imaging (MRI) of 125 children (ages 1-20 years) with brain tumors were included in the training dataset. A model introducing a self-attention mechanism into the conventional cycle-GAN was created to enhance tissue interfaces and reduce noise. The test dataset consisted of 7 patients (ages 2-14 years) who underwent adaptive planning because of changes in anatomy discovered on MRI during proton therapy. The MRI during proton therapy-based sCT was compared with replanning CT (ground truth).
Results: The Hounsfield unit-mean absolute error was significantly reduced with self-attention cycle-GAN, as compared with conventional cycle-GAN (65.3 ± 13.9 versus 88.9 ± 19.3, P < .01). The average 3-dimensional gamma passing rates (2%/2 mm criteria) for the original plan on the anatomy of the day and for the adapted plan were high (97.6% ± 1.2% and 98.9 ± 0.9%, respectively) when using sCT generated by self-attention cycle-GAN. The mean absolute differences in clinical target volume (CTV) receiving 95% of the prescription dose and 80% distal falloff along the beam axis were 1.1% ± 0.8% and 1.1 ± 0.9 mm, respectively. Areas of greatest dose difference were distal to the CTV and corresponded to shifts in distal falloff. Plan adaptation was appropriately triggered in all test patients when using sCT.
Conclusion: The novel cycle-GAN model with self-attention outperforms conventional cycle-GAN for children with brain tumors. Encouraging dosimetric results suggest that sCT generation can be used to identify patients who would benefit from adaptive replanning.