The role of zinc in the pathogenicity of human fungal pathogens.

2区 生物学 Q1 Immunology and Microbiology Advances in applied microbiology Pub Date : 2021-01-01 Epub Date: 2021-10-22 DOI:10.1016/bs.aambs.2021.09.001
Duncan Wilson
{"title":"The role of zinc in the pathogenicity of human fungal pathogens.","authors":"Duncan Wilson","doi":"10.1016/bs.aambs.2021.09.001","DOIUrl":null,"url":null,"abstract":"<p><p>Fungal pathogens now account for an unprecedented burden on human health. Like all microorganisms, these fungi must successfully forage for essential micronutrients such as zinc in order to proliferate. However, pathogenic microbes face an additional hurdle in securing zinc from their environment: the action of host nutritional immunity which strictly manipulates microbial access to this essential, but also potentially toxic trace metal. This review introduces the relevant pathogenic species and goes on to cover the molecular mechanisms of zinc uptake by human fungal pathogens. Fungi scavenge zinc from their environment via two basic mechanisms: via a family of cellular zinc importers-the ZIP transporters; and via a unique secreted zinc binding protein-the zincophore. However the genetic requirement of these systems for fungal virulence is highly species-specific. As well as zinc scarcity, potential intoxification with this heavy metal can occur and, unlike bacteria, fungi deal with environmental insult this via intraorganellar compartmentalization. Zinc availability also modulates the morphogenic behavior of a subset of pathogenic yeast species. This chapter will cover these different aspects of zinc availability on the physiology of human fungal pathogens with emphasis on the major pathogenic species Candida albicans.</p>","PeriodicalId":7298,"journal":{"name":"Advances in applied microbiology","volume":"117 ","pages":"35-61"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in applied microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.aambs.2021.09.001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 3

Abstract

Fungal pathogens now account for an unprecedented burden on human health. Like all microorganisms, these fungi must successfully forage for essential micronutrients such as zinc in order to proliferate. However, pathogenic microbes face an additional hurdle in securing zinc from their environment: the action of host nutritional immunity which strictly manipulates microbial access to this essential, but also potentially toxic trace metal. This review introduces the relevant pathogenic species and goes on to cover the molecular mechanisms of zinc uptake by human fungal pathogens. Fungi scavenge zinc from their environment via two basic mechanisms: via a family of cellular zinc importers-the ZIP transporters; and via a unique secreted zinc binding protein-the zincophore. However the genetic requirement of these systems for fungal virulence is highly species-specific. As well as zinc scarcity, potential intoxification with this heavy metal can occur and, unlike bacteria, fungi deal with environmental insult this via intraorganellar compartmentalization. Zinc availability also modulates the morphogenic behavior of a subset of pathogenic yeast species. This chapter will cover these different aspects of zinc availability on the physiology of human fungal pathogens with emphasis on the major pathogenic species Candida albicans.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锌在人类真菌病原体致病性中的作用。
真菌病原体现在对人类健康造成了前所未有的负担。像所有微生物一样,这些真菌必须成功地觅食必需的微量营养素,如锌,才能增殖。然而,病原微生物在从环境中获取锌方面面临着额外的障碍:宿主营养免疫的作用严格控制微生物对这种重要但也有潜在毒性的微量金属的获取。本文介绍了锌的相关病原种类,并对真菌侵染锌的分子机制进行了综述。真菌通过两种基本机制从环境中清除锌:通过细胞锌进口商家族——ZIP转运蛋白;并通过一种独特的分泌锌结合蛋白——锌载体。然而,这些系统对真菌毒力的遗传要求是高度物种特异性的。除了缺锌之外,这种重金属也可能导致潜在的中毒,与细菌不同,真菌通过细胞器内区隔化来处理环境损伤。锌的可用性也调节了一部分致病酵母菌的形态发生行为。本章将涵盖锌在人类真菌病原体生理学上的这些不同方面,重点是主要致病物种白色念珠菌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in applied microbiology
Advances in applied microbiology 生物-生物工程与应用微生物
CiteScore
8.20
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Advances in Applied Microbiology offers intensive reviews of the latest techniques and discoveries in this rapidly moving field. The editors are recognized experts and the format is comprehensive and instructive. Published since 1959, Advances in Applied Microbiology continues to be one of the most widely read and authoritative review sources in microbiology. Recent areas covered include bacterial diversity in the human gut, protozoan grazing of freshwater biofilms, metals in yeast fermentation processes and the interpretation of host-pathogen dialogue through microarrays.
期刊最新文献
Stress response and adaptation mechanisms in Kluyveromyces marxianus. Selenium bioactive compounds produced by beneficial microbes. Development and applications of genome-scale metabolic network models. The infant gut microbiota as the cornerstone for future gastrointestinal health. Effects of gut bacteria and their metabolites on gut health of animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1