Giulia Scioscia, Pasquale Tondo, Maria Pia Foschino Barbaro, Roberto Sabato, Crescenzio Gallo, Federica Maci, Donato Lacedonia
{"title":"Machine learning-based prediction of adherence to continuous positive airway pressure (CPAP) in obstructive sleep apnea (OSA).","authors":"Giulia Scioscia, Pasquale Tondo, Maria Pia Foschino Barbaro, Roberto Sabato, Crescenzio Gallo, Federica Maci, Donato Lacedonia","doi":"10.1080/17538157.2021.1990300","DOIUrl":null,"url":null,"abstract":"<p><p>Continuous positive airway pressure (CPAP) is the \"gold-standard\" therapy for obstructive sleep apnea (OSA), but the main problem is the poor adherence. Therefore, we have searched for the causes of poor adherence to CPAP therapy by applying predictive machine learning (ML) methods. The study was conducted on OSAs in nighttime therapy with CPAP. An outpatient follow-up was planned at 3, 6, 12 months. We collected several parameters at the baseline visit and after dividing all patients into two groups (Adherent and Non-adherent) according to therapy adherence, we compared them. Statistical differences between the two groups were not found according to baseline characteristics, except gender (<i>P</i>< .01). Therefore, we applied ML to predict CPAP adherence, and these predictive models showed an accuracy and sensitivity of 68.6% and an AUC (area under the curve) of 72.9% through the SVM (support vector machine) classification method. The identification of factors predictive of long-term CPAP adherence is complex, but our proof of concept seems to demonstrate the utility of ML to identify subjects poorly adherent to therapy. Therefore, application of these models to larger samples could aid in the careful identification of these subjects and result in important savings in healthcare spending.</p>","PeriodicalId":54984,"journal":{"name":"Informatics for Health & Social Care","volume":"47 3","pages":"274-282"},"PeriodicalIF":2.5000,"publicationDate":"2022-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics for Health & Social Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17538157.2021.1990300","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 10
Abstract
Continuous positive airway pressure (CPAP) is the "gold-standard" therapy for obstructive sleep apnea (OSA), but the main problem is the poor adherence. Therefore, we have searched for the causes of poor adherence to CPAP therapy by applying predictive machine learning (ML) methods. The study was conducted on OSAs in nighttime therapy with CPAP. An outpatient follow-up was planned at 3, 6, 12 months. We collected several parameters at the baseline visit and after dividing all patients into two groups (Adherent and Non-adherent) according to therapy adherence, we compared them. Statistical differences between the two groups were not found according to baseline characteristics, except gender (P< .01). Therefore, we applied ML to predict CPAP adherence, and these predictive models showed an accuracy and sensitivity of 68.6% and an AUC (area under the curve) of 72.9% through the SVM (support vector machine) classification method. The identification of factors predictive of long-term CPAP adherence is complex, but our proof of concept seems to demonstrate the utility of ML to identify subjects poorly adherent to therapy. Therefore, application of these models to larger samples could aid in the careful identification of these subjects and result in important savings in healthcare spending.
期刊介绍:
Informatics for Health & Social Care promotes evidence-based informatics as applied to the domain of health and social care. It showcases informatics research and practice within the many and diverse contexts of care; it takes personal information, both its direct and indirect use, as its central focus.
The scope of the Journal is broad, encompassing both the properties of care information and the life-cycle of associated information systems.
Consideration of the properties of care information will necessarily include the data itself, its representation, structure, and associated processes, as well as the context of its use, highlighting the related communication, computational, cognitive, social and ethical aspects.
Consideration of the life-cycle of care information systems includes full range from requirements, specifications, theoretical models and conceptual design through to sustainable implementations, and the valuation of impacts. Empirical evidence experiences related to implementation are particularly welcome.
Informatics in Health & Social Care seeks to consolidate and add to the core knowledge within the disciplines of Health and Social Care Informatics. The Journal therefore welcomes scientific papers, case studies and literature reviews. Examples of novel approaches are particularly welcome. Articles might, for example, show how care data is collected and transformed into useful and usable information, how informatics research is translated into practice, how specific results can be generalised, or perhaps provide case studies that facilitate learning from experience.