Microbial energy management-A product of three broad tradeoffs.

2区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Advances in Microbial Physiology Pub Date : 2020-01-01 Epub Date: 2020-10-20 DOI:10.1016/bs.ampbs.2020.09.001
James B McKinlay, Gregory M Cook, Kiel Hards
{"title":"Microbial energy management-A product of three broad tradeoffs.","authors":"James B McKinlay,&nbsp;Gregory M Cook,&nbsp;Kiel Hards","doi":"10.1016/bs.ampbs.2020.09.001","DOIUrl":null,"url":null,"abstract":"<p><p>Wherever thermodynamics allows, microbial life has evolved to transform and harness energy. Microbial life thus abounds in the most unexpected places, enabled by profound metabolic diversity. Within this diversity, energy is transformed primarily through variations on a few core mechanisms. Energy is further managed by the physiological processes of cell growth and maintenance that use energy. Some aspects of microbial physiology are streamlined for energetic efficiency while other aspects seem suboptimal or even wasteful. We propose that the energy that a microbe harnesses and devotes to growth and maintenance is a product of three broad tradeoffs: (i) economic, trading enzyme synthesis or operational cost for functional benefit, (ii) environmental, trading optimization for a single environment for adaptability to multiple environments, and (iii) thermodynamic, trading energetic yield for forward metabolic flux. Consideration of these tradeoffs allows one to reconcile features of microbial physiology that seem to opposingly promote either energetic efficiency or waste.</p>","PeriodicalId":50953,"journal":{"name":"Advances in Microbial Physiology","volume":"77 ","pages":"139-185"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.ampbs.2020.09.001","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Microbial Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ampbs.2020.09.001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/10/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 9

Abstract

Wherever thermodynamics allows, microbial life has evolved to transform and harness energy. Microbial life thus abounds in the most unexpected places, enabled by profound metabolic diversity. Within this diversity, energy is transformed primarily through variations on a few core mechanisms. Energy is further managed by the physiological processes of cell growth and maintenance that use energy. Some aspects of microbial physiology are streamlined for energetic efficiency while other aspects seem suboptimal or even wasteful. We propose that the energy that a microbe harnesses and devotes to growth and maintenance is a product of three broad tradeoffs: (i) economic, trading enzyme synthesis or operational cost for functional benefit, (ii) environmental, trading optimization for a single environment for adaptability to multiple environments, and (iii) thermodynamic, trading energetic yield for forward metabolic flux. Consideration of these tradeoffs allows one to reconcile features of microbial physiology that seem to opposingly promote either energetic efficiency or waste.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微生物能量管理——是三种广泛权衡的产物。
只要热力学允许,微生物就会进化到转化和利用能量。微生物生命因此在最意想不到的地方大量存在,这是由于新陈代谢的多样性。在这种多样性中,能量主要通过几个核心机制的变化来转换。能量由细胞生长和维持的生理过程进一步管理,这些生理过程需要能量。微生物生理学的某些方面被简化为能量效率,而其他方面似乎不理想甚至浪费。我们提出,微生物利用并致力于生长和维持的能量是三种广泛权衡的产物:(i)经济,以酶合成或操作成本换取功能效益;(ii)环境,以单一环境的优化换取对多种环境的适应性;(iii)热力学,以能量产量换取向前代谢通量。考虑到这些权衡,人们可以调和微生物生理学的特征,这些特征似乎相反地促进了能量效率或浪费。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Microbial Physiology
Advances in Microbial Physiology 生物-生化与分子生物学
CiteScore
6.20
自引率
0.00%
发文量
16
期刊介绍: Advances in Microbial Physiology publishes topical and important reviews, interpreting physiology to include all material that contributes to our understanding of how microorganisms and their component parts work. First published in 1967, the editors have always striven to interpret microbial physiology in the broadest context and have never restricted the contents to traditional views of whole cell physiology.
期刊最新文献
Preface. Biological functions of bacterial lysophospholipids. Redefining the bacterial Type I protein secretion system. Purine catabolism by enterobacteria. Fumarate, a central electron acceptor for Enterobacteriaceae beyond fumarate respiration and energy conservation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1