Uldis Kalnenieks, Katherine M Pappas, Katja Bettenbrock
{"title":"Zymomonas mobilis metabolism: Novel tools and targets for its rational engineering.","authors":"Uldis Kalnenieks, Katherine M Pappas, Katja Bettenbrock","doi":"10.1016/bs.ampbs.2020.08.001","DOIUrl":null,"url":null,"abstract":"<p><p>Zymomonas mobilis is an α-proteobacterium that interests the biofuel industry due to its perfect ethanol fermentation yields. From its first description as a bacterial isolate in fermented alcoholic beverages to date, Z. mobilis has been rigorously studied in directions basic and applied. The Z. mobilis powerful Entner-Doudoroff glycolytic pathway has been the center of rigorous biochemical studies and, aside from ethanol, it has attracted interest in terms of high-added-value chemical manufacturing. Energetic balances and the effects of respiration have been explored in fundamental directions as also in applications pursuing strain enhancement and the utilization of alternative carbon sources. Metabolic modeling has addressed the optimization of the biochemical circuitry at various conditions of growth and/or substrate utilization; it has been also critical in predicting desirable end-product yields via flux redirection. Lastly, stress tolerance has received particular attention, since it directly determines biocatalytical performance at challenging bioreactor conditions. At a genetic level, advances in the genetic engineering of the organism have brought forth beneficial manipulations in the Z. mobilis gene pool, e.g., knock-outs, knock-ins and gene stacking, aiming to broaden the metabolic repertoire and increase robustness. Recent omic and expressional studies shed light on the genomic content of the most applied strains and reveal landscapes of activity manifested at ambient or reactor-based conditions. Studies such as those reviewed in this work, contribute to the understanding of the biology of Z. mobilis, enable insightful strain development, and pave the way for the transformation of Z. mobilis into a consummate organism for biomass conversion.</p>","PeriodicalId":50953,"journal":{"name":"Advances in Microbial Physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.ampbs.2020.08.001","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Microbial Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ampbs.2020.08.001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/10/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 5
Abstract
Zymomonas mobilis is an α-proteobacterium that interests the biofuel industry due to its perfect ethanol fermentation yields. From its first description as a bacterial isolate in fermented alcoholic beverages to date, Z. mobilis has been rigorously studied in directions basic and applied. The Z. mobilis powerful Entner-Doudoroff glycolytic pathway has been the center of rigorous biochemical studies and, aside from ethanol, it has attracted interest in terms of high-added-value chemical manufacturing. Energetic balances and the effects of respiration have been explored in fundamental directions as also in applications pursuing strain enhancement and the utilization of alternative carbon sources. Metabolic modeling has addressed the optimization of the biochemical circuitry at various conditions of growth and/or substrate utilization; it has been also critical in predicting desirable end-product yields via flux redirection. Lastly, stress tolerance has received particular attention, since it directly determines biocatalytical performance at challenging bioreactor conditions. At a genetic level, advances in the genetic engineering of the organism have brought forth beneficial manipulations in the Z. mobilis gene pool, e.g., knock-outs, knock-ins and gene stacking, aiming to broaden the metabolic repertoire and increase robustness. Recent omic and expressional studies shed light on the genomic content of the most applied strains and reveal landscapes of activity manifested at ambient or reactor-based conditions. Studies such as those reviewed in this work, contribute to the understanding of the biology of Z. mobilis, enable insightful strain development, and pave the way for the transformation of Z. mobilis into a consummate organism for biomass conversion.
期刊介绍:
Advances in Microbial Physiology publishes topical and important reviews, interpreting physiology to include all material that contributes to our understanding of how microorganisms and their component parts work. First published in 1967, the editors have always striven to interpret microbial physiology in the broadest context and have never restricted the contents to traditional views of whole cell physiology.