Proton Pump Inhibitors and Risk of Dementia: A Hypothesis Generated but Not Adequately Tested.

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2021-01-01 DOI:10.1177/15333175211062413
Mishah Azhar, Lawrence Fiedler, Patricio S Espinosa, Charles H Hennekens
{"title":"Proton Pump Inhibitors and Risk of Dementia: A Hypothesis Generated but Not Adequately Tested.","authors":"Mishah Azhar, Lawrence Fiedler, Patricio S Espinosa, Charles H Hennekens","doi":"10.1177/15333175211062413","DOIUrl":null,"url":null,"abstract":"<p><p>We reviewed the evidence on proton pump inhibitors (PPIs) and dementia. PPIs are among the most widely utilized drugs in the world. Dementia affects roughly 5% of the population of the United States (US) and world aged 60 years and older. With respect to PPIs and dementia, basic research has suggested plausible mechanisms but descriptive and analytic epidemiological studies are not inconsistent. In addition, a single large-scale randomized trial showed no association. When the evidence is incomplete, it is appropriate for clinicians and researchers to remain uncertain. Regulatory or public health authorities sometimes need to make real-world decisions based on real-world data. When the evidence is complete, then the most rational judgments for individual patients the health of the general public are possible At present, the evidence on PPIs and dementia suggests more reassurance than alarm. Further large-scale randomized evidence is necessary to do so.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"15333175211062413"},"PeriodicalIF":4.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10581100/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15333175211062413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We reviewed the evidence on proton pump inhibitors (PPIs) and dementia. PPIs are among the most widely utilized drugs in the world. Dementia affects roughly 5% of the population of the United States (US) and world aged 60 years and older. With respect to PPIs and dementia, basic research has suggested plausible mechanisms but descriptive and analytic epidemiological studies are not inconsistent. In addition, a single large-scale randomized trial showed no association. When the evidence is incomplete, it is appropriate for clinicians and researchers to remain uncertain. Regulatory or public health authorities sometimes need to make real-world decisions based on real-world data. When the evidence is complete, then the most rational judgments for individual patients the health of the general public are possible At present, the evidence on PPIs and dementia suggests more reassurance than alarm. Further large-scale randomized evidence is necessary to do so.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
质子泵抑制剂与痴呆症风险:一个提出但未得到充分验证的假设
我们回顾了质子泵抑制剂(PPI)与痴呆症的相关证据。质子泵抑制剂是世界上使用最广泛的药物之一。在美国和全世界 60 岁及以上的人口中,约有 5% 的人患有痴呆症。关于 PPIs 和痴呆症,基础研究提出了一些似是而非的机制,但描述性和分析性流行病学研究并不一致。此外,一项大规模随机试验显示两者之间没有关联。当证据不完整时,临床医生和研究人员应保持不确定性。监管机构或公共卫生机构有时需要根据实际数据做出实际决策。目前,有关 PPIs 和痴呆症的证据更多的是让人放心,而不是敲响警钟。要做到这一点,还需要进一步的大规模随机证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Pullulan Coating Preserves High Conductivity in Cable Bacteria Wires. Polypyrrole-Coated Microneedle Platform for Offline Electrochemical Detection of Interferon-Alpha in Interstitial Fluid. 2D MXene-Based Mesoporous Silica Nanoplatform for Autophagy Inhibition and Enhanced Photothermal Therapy of Hepatoblastoma. Chia Seed Mucilage-Based Bilayer Sponges Containing Zinc Oxide Nanoparticles for Wound Dressing. Quaternized Chitosan-Ferulic Acid-Based Nanomicelles for Dimethoxycurcumin Delivery and Synergistic Colorectal Adenocarcinoma Therapy with 5-Fluorouracil.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1