Surendra Prajapati , Maëlle Locatelli , Caleb Sawyer , Julia Holmes , Keith Bonin , Paul Black , Pierre-Alexandre Vidi
{"title":"Characterization and implementation of a miniature X-ray system for live cell microscopy","authors":"Surendra Prajapati , Maëlle Locatelli , Caleb Sawyer , Julia Holmes , Keith Bonin , Paul Black , Pierre-Alexandre Vidi","doi":"10.1016/j.mrfmmm.2021.111772","DOIUrl":null,"url":null,"abstract":"<div><p>The study of radiation effects on biological tissues is a diverse field of research with direct applications to improve human health, in particular in the contexts of radiation therapy and space exploration. Understanding the DNA damage response following radiation exposure, which is a key determinant for mutagenesis, requires reproducible methods for delivering known doses of ionizing radiation (IR) in a controlled environment. Multiple IR sources, including research X-ray and gamma-ray irradiators are routinely used in basic and translational research with cell and animal models. These systems are however not ideal when a high temporal resolution is needed, for example to study early DNA damage responses with live cell microscopy. Here, we characterize the dose rate and beam properties of a commercial, miniature, affordable, and versatile X-ray source (Mini-X). We describe how to use Mini-X on the stage of a fluorescence microscope to deliver high IR dose rates (up to 29 Gy/min) or lower dose rates (≤ 0.1 Gy/min) in live cell imaging experiments. This article provides a blueprint for radiation biology applications with high temporal resolution, with a step-by-step guide to implement a miniature X-ray system on an imaging platform, and the information needed to characterize the system.</p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"824 ","pages":"Article 111772"},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002751072100035X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
The study of radiation effects on biological tissues is a diverse field of research with direct applications to improve human health, in particular in the contexts of radiation therapy and space exploration. Understanding the DNA damage response following radiation exposure, which is a key determinant for mutagenesis, requires reproducible methods for delivering known doses of ionizing radiation (IR) in a controlled environment. Multiple IR sources, including research X-ray and gamma-ray irradiators are routinely used in basic and translational research with cell and animal models. These systems are however not ideal when a high temporal resolution is needed, for example to study early DNA damage responses with live cell microscopy. Here, we characterize the dose rate and beam properties of a commercial, miniature, affordable, and versatile X-ray source (Mini-X). We describe how to use Mini-X on the stage of a fluorescence microscope to deliver high IR dose rates (up to 29 Gy/min) or lower dose rates (≤ 0.1 Gy/min) in live cell imaging experiments. This article provides a blueprint for radiation biology applications with high temporal resolution, with a step-by-step guide to implement a miniature X-ray system on an imaging platform, and the information needed to characterize the system.
期刊介绍:
Mutation Research (MR) provides a platform for publishing all aspects of DNA mutations and epimutations, from basic evolutionary aspects to translational applications in genetic and epigenetic diagnostics and therapy. Mutations are defined as all possible alterations in DNA sequence and sequence organization, from point mutations to genome structural variation, chromosomal aberrations and aneuploidy. Epimutations are defined as alterations in the epigenome, i.e., changes in DNA methylation, histone modification and small regulatory RNAs.
MR publishes articles in the following areas:
Of special interest are basic mechanisms through which DNA damage and mutations impact development and differentiation, stem cell biology and cell fate in general, including various forms of cell death and cellular senescence.
The study of genome instability in human molecular epidemiology and in relation to complex phenotypes, such as human disease, is considered a growing area of importance.
Mechanisms of (epi)mutation induction, for example, during DNA repair, replication or recombination; novel methods of (epi)mutation detection, with a focus on ultra-high-throughput sequencing.
Landscape of somatic mutations and epimutations in cancer and aging.
Role of de novo mutations in human disease and aging; mutations in population genomics.
Interactions between mutations and epimutations.
The role of epimutations in chromatin structure and function.
Mitochondrial DNA mutations and their consequences in terms of human disease and aging.
Novel ways to generate mutations and epimutations in cell lines and animal models.