Special issue on statistical analysis of networks: Preface by the guest editors.

Pub Date : 2021-01-01 Epub Date: 2021-11-09 DOI:10.1007/s10260-021-00608-z
Michael Schweinberger, Francesco C Stingo, Maria Prosperina Vitale
{"title":"Special issue on statistical analysis of networks: Preface by the guest editors.","authors":"Michael Schweinberger,&nbsp;Francesco C Stingo,&nbsp;Maria Prosperina Vitale","doi":"10.1007/s10260-021-00608-z","DOIUrl":null,"url":null,"abstract":"<p><p>The special issue on <i>Statistical Analysis of Networks</i> aspires to convey the breadth and depth of statistical learning with networks, ranging from networks that are observed to networks that are unobserved and learned from data. It includes ten select papers with methodological and theoretical advances, and demonstrates the usefulness of the network paradigm by applications to current problems.</p>","PeriodicalId":74868,"journal":{"name":"","volume":"30 5","pages":"1285-1288"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8576455/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10260-021-00608-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The special issue on Statistical Analysis of Networks aspires to convey the breadth and depth of statistical learning with networks, ranging from networks that are observed to networks that are unobserved and learned from data. It includes ten select papers with methodological and theoretical advances, and demonstrates the usefulness of the network paradigm by applications to current problems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网络统计分析特刊:特邀编辑序。
《网络的统计分析》特刊希望通过网络传达统计学习的广度和深度,从观察到的网络到未观察到的网络和从数据中学习的网络。它包括十篇精选的方法和理论进步的论文,并通过应用于当前问题展示了网络范式的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1