{"title":"Frequency and diversity of small plasmids in mesophilic Aeromonas isolates from fish, water and sediment","authors":"Daniel Pérez-García , Violeta Larios-Serrato , Rogelio Rojas-Rios , Jorge Erick Otero-Olarra , Itza Mendoza-Sanchez , Everardo Curiel-Quesada , Abigail Pérez-Valdespino","doi":"10.1016/j.plasmid.2021.102607","DOIUrl":null,"url":null,"abstract":"<div><p><span>Plasmids are autonomous genetic elements ubiquitously present in bacteria. In addition to containing genetic determinants responsible for their replication and stability, some plasmids may carry genes that help bacteria adapt to different environments, while others without a known function are classified as cryptic. In this work we identified and characterized plasmids from a collection of mesophilic </span><span><em>Aeromonas</em></span> spp. (<em>N</em> = 90) isolated from water, sediments and fish. A total of 15 small plasmids ranging from 2287 to 10,558 bp, with an incidence of 16.7% (15/90) was found. Plasmids were detected in <em>A. hydrophila</em> (6), <em>A. veronii</em> (4)<em>, A. taiwanensis (2), A. jandaei</em> (1), <em>A. media</em> (1) and <em>Aeromonas</em><span> sp. (1). There were no large or megaplasmids in the strains studied in this work. Analysis of coding sequences identified proteins associated to replication, mobilization, antibiotic resistance, virulence and stability. A considerable number of hypothetical proteins with unknown functions were also found. Some strains shared identical plasmid profiles, however, only two of them were clones. Small plasmids could be acting as a gene repositories as suggested by the presence of a gene encoding for a putative zonula occludens toxin (Zot) that causes diarrhea and the </span><em>qnr</em>B gene involved in quinolone resistance harbored in plasmids p<em>Aer</em>XII and p<em>Aer</em>XIII respectively.</p></div>","PeriodicalId":49689,"journal":{"name":"Plasmid","volume":"118 ","pages":"Article 102607"},"PeriodicalIF":1.8000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmid","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147619X21000548","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 6
Abstract
Plasmids are autonomous genetic elements ubiquitously present in bacteria. In addition to containing genetic determinants responsible for their replication and stability, some plasmids may carry genes that help bacteria adapt to different environments, while others without a known function are classified as cryptic. In this work we identified and characterized plasmids from a collection of mesophilic Aeromonas spp. (N = 90) isolated from water, sediments and fish. A total of 15 small plasmids ranging from 2287 to 10,558 bp, with an incidence of 16.7% (15/90) was found. Plasmids were detected in A. hydrophila (6), A. veronii (4), A. taiwanensis (2), A. jandaei (1), A. media (1) and Aeromonas sp. (1). There were no large or megaplasmids in the strains studied in this work. Analysis of coding sequences identified proteins associated to replication, mobilization, antibiotic resistance, virulence and stability. A considerable number of hypothetical proteins with unknown functions were also found. Some strains shared identical plasmid profiles, however, only two of them were clones. Small plasmids could be acting as a gene repositories as suggested by the presence of a gene encoding for a putative zonula occludens toxin (Zot) that causes diarrhea and the qnrB gene involved in quinolone resistance harbored in plasmids pAerXII and pAerXIII respectively.
期刊介绍:
Plasmid publishes original research on genetic elements in all kingdoms of life with emphasis on maintenance, transmission and evolution of extrachromosomal elements. Objects of interest include plasmids, bacteriophages, mobile genetic elements, organelle DNA, and genomic and pathogenicity islands.