{"title":"Diurnal variations in muscle and liver glycogen differ depending on the timing of exercise.","authors":"Kaito Iwayama, Yoko Tanabe, Fumiya Tanji, Takahiro Ohnishi, Hideyuki Takahashi","doi":"10.1186/s12576-021-00821-1","DOIUrl":null,"url":null,"abstract":"<p><p>It has been suggested that glycogen functions not only in carbohydrate energy storage, but also as molecular sensors capable of activating lipolysis. This study aimed to compare the variation in liver and muscle glycogen during the day due to different timing of exercise. Nine healthy young men participated in two trials in which they performed a single bout of exercise at 70% of their individual maximal oxygen uptake for 60 min in the post-absorptive (morning) or post-prandial (afternoon) state. Liver and muscles glycogen levels were measured using carbon magnetic resonance spectroscopy (<sup>13</sup>C MRS). Diurnal variations in liver and muscle glycogen compared to baseline levels were significantly different depending on the timing of exercise. The effect of the timing of exercise on glycogen fluctuation is known to be related to a variety of metabolic signals, and the results of this study will be useful for future research on energy metabolism.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"71 1","pages":"35"},"PeriodicalIF":3.2000,"publicationDate":"2021-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10717652/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12576-021-00821-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
It has been suggested that glycogen functions not only in carbohydrate energy storage, but also as molecular sensors capable of activating lipolysis. This study aimed to compare the variation in liver and muscle glycogen during the day due to different timing of exercise. Nine healthy young men participated in two trials in which they performed a single bout of exercise at 70% of their individual maximal oxygen uptake for 60 min in the post-absorptive (morning) or post-prandial (afternoon) state. Liver and muscles glycogen levels were measured using carbon magnetic resonance spectroscopy (13C MRS). Diurnal variations in liver and muscle glycogen compared to baseline levels were significantly different depending on the timing of exercise. The effect of the timing of exercise on glycogen fluctuation is known to be related to a variety of metabolic signals, and the results of this study will be useful for future research on energy metabolism.
期刊介绍:
The Journal of Physiological Sciences publishes peer-reviewed original papers, reviews, short communications, technical notes, and letters to the editor, based on the principles and theories of modern physiology and addressed to the international scientific community. All fields of physiology are covered, encompassing molecular, cellular and systems physiology. The emphasis is on human and vertebrate physiology, but comparative papers are also considered. The process of obtaining results must be ethically sound.
Fields covered:
Adaptation and environment
Autonomic nervous function
Biophysics
Cell sensors and signaling
Central nervous system and brain sciences
Endocrinology and metabolism
Excitable membranes and neural cell physiology
Exercise physiology
Gastrointestinal and kidney physiology
Heart and circulatory physiology
Molecular and cellular physiology
Muscle physiology
Physiome/systems biology
Respiration physiology
Senses.