{"title":"Repeatability of Voluntary Thermal Maximum and Covariance with Water Loss Reveal Potential for Adaptation to Changing Climates.","authors":"Matthew R McTernan, Michael W Sears","doi":"10.1086/717938","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractAlthough climate warming poses a grave threat to amphibians, little is known about the capacity of this group to evolve in response to warming. The capacity of key traits to evolve depends on the presence of genetic variation on which selection can act. Here, we use repeatability estimates to estimate the potential upper bounds of heritable genetic variation in voluntary and critical thermal maxima of gray-cheeked salamanders (<i>Plethodon metcalfi</i>). Increases in thermal tolerance may also require concordant increases in resistance to water loss because hotter temperatures incur greater evaporative risk. Therefore, we also tested for a correlation between voluntary thermal maxima and resistance to water loss and conducted an acclimation study to test for covariation between these traits in response to warming. Voluntary thermal maxima exhibited low to moderate levels of repeatability (<math><mrow><mi>R</mi><mo>=</mo><mn>0.32</mn></mrow></math>, <math><mrow><mi>P</mi><mo>=</mo><mn>0.045</mn></mrow></math>), while critical thermal maxima exhibited no statistically significant repeatability (<math><mrow><mi>R</mi><mo>=</mo><mn>0.10</mn></mrow></math>, <math><mrow><mi>P</mi><mo>=</mo><mn>0.57</mn></mrow></math>). Voluntary thermal maxima also correlated positively with resistance to water loss (<math><mrow><mi>R</mi><mo>=</mo><mn>0.31</mn></mrow></math>, <math><mrow><mi>P</mi><mo>=</mo><mn>0.025</mn></mrow></math>) but only when controlling for body mass. Voluntary thermal maxima and resistance to water loss also exhibited different acclimatory responses across control (12°C-18°C) and warm (18°C-24°C) temperature regimes, indicating a potential decoupling of traits in different thermal environments. By addressing the repeatability of thermal tolerance and the potential for covariation with resistance to water loss, we begin to address some of the key requirements of amphibians to evolve in warming climates.</p>","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":"95 2","pages":"113-121"},"PeriodicalIF":1.8000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological and Biochemical Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/717938","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
AbstractAlthough climate warming poses a grave threat to amphibians, little is known about the capacity of this group to evolve in response to warming. The capacity of key traits to evolve depends on the presence of genetic variation on which selection can act. Here, we use repeatability estimates to estimate the potential upper bounds of heritable genetic variation in voluntary and critical thermal maxima of gray-cheeked salamanders (Plethodon metcalfi). Increases in thermal tolerance may also require concordant increases in resistance to water loss because hotter temperatures incur greater evaporative risk. Therefore, we also tested for a correlation between voluntary thermal maxima and resistance to water loss and conducted an acclimation study to test for covariation between these traits in response to warming. Voluntary thermal maxima exhibited low to moderate levels of repeatability (, ), while critical thermal maxima exhibited no statistically significant repeatability (, ). Voluntary thermal maxima also correlated positively with resistance to water loss (, ) but only when controlling for body mass. Voluntary thermal maxima and resistance to water loss also exhibited different acclimatory responses across control (12°C-18°C) and warm (18°C-24°C) temperature regimes, indicating a potential decoupling of traits in different thermal environments. By addressing the repeatability of thermal tolerance and the potential for covariation with resistance to water loss, we begin to address some of the key requirements of amphibians to evolve in warming climates.
期刊介绍:
Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches primarily publishes original research in animal physiology and biochemistry as considered from behavioral, ecological, and/or evolutionary perspectives. Studies at all levels of biological organization from the molecular to the whole organism are welcome, and work that integrates across levels of organization is particularly encouraged. Studies that focus on behavior or morphology are welcome, so long as they include ties to physiology or biochemistry, in addition to having an ecological or evolutionary context.
Subdisciplines of interest include nutrition and digestion, salt and water balance, epithelial and membrane transport, gas exchange and transport, acid-base balance, temperature adaptation, energetics, structure and function of macromolecules, chemical coordination and signal transduction, nitrogen metabolism and excretion, locomotion and muscle function, biomechanics, circulation, behavioral, comparative and mechanistic endocrinology, sensory physiology, neural coordination, and ecotoxicology ecoimmunology.