Effects of Dietary Shifts on Ontogenetic Development of Metabolic Rates in Age 0 Lake Sturgeon (Acipenser fulvescens).

IF 1.8 3区 生物学 Q3 PHYSIOLOGY Physiological and Biochemical Zoology Pub Date : 2022-03-01 DOI:10.1086/718211
Gwangseok R Yoon, Andrew Laluk, Ian A Bouyoucos, W Gary Anderson
{"title":"Effects of Dietary Shifts on Ontogenetic Development of Metabolic Rates in Age 0 Lake Sturgeon (<i>Acipenser fulvescens</i>).","authors":"Gwangseok R Yoon,&nbsp;Andrew Laluk,&nbsp;Ian A Bouyoucos,&nbsp;W Gary Anderson","doi":"10.1086/718211","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractIn many fish species, ontogenetic dietary shifts cause changes in both quantitative and qualitative intake of energy, and these transitions can act as significant bottlenecks in survival within a given year class. In the present study, we estimated routine metabolic rate (RMR) and forced maximum metabolic rate (FMR) in age 0 lake sturgeon (<i>Acipenser fulvescens</i>) on a weekly basis from 6 to 76 days posthatch (dph) within the same cohort of fish. We were particularly interested in the period of dietary transition from yolk to exogenous feeding between 6 and 17 dph and as the fish transitioned from an artemia-based diet to a predominantly bloodworm diet between 49 and 67 dph. Measurement of growth rate and energy density throughout indicated that there was a brief period of growth arrest during the transition from artemia to bloodworm. The highest mass-specific RMR (mg O<sub>2</sub> kg<sup>-1</sup> h<sup>-1</sup>) recorded throughout the first 76 d of development occurred during the yolk sac phase and during transition from artemia to bloodworm. Similarly, diet transition from artemia to bloodworm-when growth arrest was observed-increased scaled RMR (i.e., mg O<sub>2</sub> kg<sup>-0.89</sup> h<sup>-1</sup>), and it did not significantly differ from scaled FMR. Log-log relationships between non-mass-specific RMR or FMR (i.e., mg O<sub>2</sub> h<sup>-1</sup>) and body mass significantly changed as the growing fish adapted to the nutritional differences of their primary diet. We demonstrate that dietary change during early ontogeny has consequences for growth that may reflect altered metabolic performance. Results have implications for understanding cohort and population dynamics during early life and effective management for conservation fish hatcheries.</p>","PeriodicalId":54609,"journal":{"name":"Physiological and Biochemical Zoology","volume":"95 2","pages":"135-151"},"PeriodicalIF":1.8000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological and Biochemical Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/718211","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

AbstractIn many fish species, ontogenetic dietary shifts cause changes in both quantitative and qualitative intake of energy, and these transitions can act as significant bottlenecks in survival within a given year class. In the present study, we estimated routine metabolic rate (RMR) and forced maximum metabolic rate (FMR) in age 0 lake sturgeon (Acipenser fulvescens) on a weekly basis from 6 to 76 days posthatch (dph) within the same cohort of fish. We were particularly interested in the period of dietary transition from yolk to exogenous feeding between 6 and 17 dph and as the fish transitioned from an artemia-based diet to a predominantly bloodworm diet between 49 and 67 dph. Measurement of growth rate and energy density throughout indicated that there was a brief period of growth arrest during the transition from artemia to bloodworm. The highest mass-specific RMR (mg O2 kg-1 h-1) recorded throughout the first 76 d of development occurred during the yolk sac phase and during transition from artemia to bloodworm. Similarly, diet transition from artemia to bloodworm-when growth arrest was observed-increased scaled RMR (i.e., mg O2 kg-0.89 h-1), and it did not significantly differ from scaled FMR. Log-log relationships between non-mass-specific RMR or FMR (i.e., mg O2 h-1) and body mass significantly changed as the growing fish adapted to the nutritional differences of their primary diet. We demonstrate that dietary change during early ontogeny has consequences for growth that may reflect altered metabolic performance. Results have implications for understanding cohort and population dynamics during early life and effective management for conservation fish hatcheries.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
饮食变化对0岁湖鲟代谢率个体发育的影响
在许多鱼类中,个体发生的饮食变化会导致能量摄入的数量和质量发生变化,这些变化可能成为特定年度类中生存的重大瓶颈。在本研究中,我们在同一队列的鱼中,每周估计0岁湖鲟(Acipenser fulvescens)的常规代谢率(RMR)和强制最大代谢率(FMR),时间为孵化后6至76天。我们特别感兴趣的是在6 - 17 dph之间从蛋黄到外源饲料的饮食过渡时期,以及在49 - 67 dph之间从以青蒿为基础的饮食过渡到以血虫为主的饮食。生长速率和能量密度的测量表明,在从蒿到血虫的过渡过程中有一段短暂的生长停滞期。在发育的前76 d,记录到的最高质量特异性RMR (mg O2 kg-1 h-1)发生在卵黄囊期和从蒿虫到血虫的过渡期间。同样,当观察到生长停滞时,饲料从青蒿过渡到血虫,增加了比例RMR(即mg O2 kg-0.89 h-1),与比例FMR没有显著差异。非质量特异性RMR或FMR(即mg O2 h-1)与体重之间的对数对数关系随着生长中的鱼类适应其主要饮食的营养差异而显著变化。我们证明,早期个体发育期间的饮食变化对生长的影响可能反映了代谢性能的改变。研究结果对了解种群和种群早期动态以及有效管理养护鱼孵化场具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
6.20%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches primarily publishes original research in animal physiology and biochemistry as considered from behavioral, ecological, and/or evolutionary perspectives. Studies at all levels of biological organization from the molecular to the whole organism are welcome, and work that integrates across levels of organization is particularly encouraged. Studies that focus on behavior or morphology are welcome, so long as they include ties to physiology or biochemistry, in addition to having an ecological or evolutionary context. Subdisciplines of interest include nutrition and digestion, salt and water balance, epithelial and membrane transport, gas exchange and transport, acid-base balance, temperature adaptation, energetics, structure and function of macromolecules, chemical coordination and signal transduction, nitrogen metabolism and excretion, locomotion and muscle function, biomechanics, circulation, behavioral, comparative and mechanistic endocrinology, sensory physiology, neural coordination, and ecotoxicology ecoimmunology.
期刊最新文献
IGF-1 Levels Increase during an Immune but Not an Oxidative Challenge in an Avian Model, the Japanese Quail Infection Causes Trade-Offs between Development and Growth in Larval Amphibians. Announcement: Physiological and Biochemical Zoology Is Changing Its Name to Ecological and Evolutionary Physiology. Environmental stress and the morphology of Daphnia pulex The rate of cooling during torpor entry drives torpor patterns in a small marsupial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1