Pamelia N Lim, Maritza M Cervantes, Linh K Pham, Alissa C Rothchild
{"title":"Alveolar macrophages: novel therapeutic targets for respiratory diseases.","authors":"Pamelia N Lim, Maritza M Cervantes, Linh K Pham, Alissa C Rothchild","doi":"10.1017/erm.2021.21","DOIUrl":null,"url":null,"abstract":"<p><p>Alveolar macrophages (AMs) are lung-resident myeloid cells that sit at the interface of the airway and lung tissue. Under homeostatic conditions, their primary function is to clear debris, dead cells and excess surfactant from the airways. They also serve as innate pulmonary sentinels for respiratory pathogens and environmental airborne particles and as regulators of pulmonary inflammation. However, they have not typically been viewed as primary therapeutic targets for respiratory diseases. Here, we discuss the role of AMs in various lung diseases, explore the potential therapeutic strategies to target these innate cells and weigh the potential risks and challenges of such therapies. Additionally, in the context of the COVID-19 pandemic, we examine the role AMs play in severe disease and the therapeutic strategies that have been harnessed to modulate their function and protect against severe lung damage. There are many novel approaches in development to target AMs, such as inhaled antibiotics, liposomal and microparticle delivery systems, and host-directed therapies, which have the potential to provide critical treatment to patients suffering from severe respiratory diseases, yet there is still much work to be done to fully understand the possible benefits and risks of such approaches.</p>","PeriodicalId":50462,"journal":{"name":"Expert Reviews in Molecular Medicine","volume":"23 ","pages":"e18"},"PeriodicalIF":4.5000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Reviews in Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/erm.2021.21","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 9
Abstract
Alveolar macrophages (AMs) are lung-resident myeloid cells that sit at the interface of the airway and lung tissue. Under homeostatic conditions, their primary function is to clear debris, dead cells and excess surfactant from the airways. They also serve as innate pulmonary sentinels for respiratory pathogens and environmental airborne particles and as regulators of pulmonary inflammation. However, they have not typically been viewed as primary therapeutic targets for respiratory diseases. Here, we discuss the role of AMs in various lung diseases, explore the potential therapeutic strategies to target these innate cells and weigh the potential risks and challenges of such therapies. Additionally, in the context of the COVID-19 pandemic, we examine the role AMs play in severe disease and the therapeutic strategies that have been harnessed to modulate their function and protect against severe lung damage. There are many novel approaches in development to target AMs, such as inhaled antibiotics, liposomal and microparticle delivery systems, and host-directed therapies, which have the potential to provide critical treatment to patients suffering from severe respiratory diseases, yet there is still much work to be done to fully understand the possible benefits and risks of such approaches.
期刊介绍:
Expert Reviews in Molecular Medicine is an innovative online journal featuring authoritative and timely Reviews covering gene therapy, immunotherapeutics, drug design, vaccines, genetic testing, pathogenesis, microbiology, genomics, molecular epidemiology and diagnostic techniques. We especially welcome reviews on translational aspects of molecular medicine, particularly those related to the application of new understanding of the molecular basis of disease to experimental medicine and clinical practice.