Statistical models and computational tools for predicting complex traits and diseases.

Q2 Agricultural and Biological Sciences Genomics and Informatics Pub Date : 2021-12-01 Epub Date: 2021-12-31 DOI:10.5808/gi.21053
Wonil Chung
{"title":"Statistical models and computational tools for predicting complex traits and diseases.","authors":"Wonil Chung","doi":"10.5808/gi.21053","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting individual traits and diseases from genetic variants is critical to fulfilling the promise of personalized medicine. The genetic variants from genome-wide association studies (GWAS), including variants well below GWAS significance, can be aggregated into highly significant predictions across a wide range of complex traits and diseases. The recent arrival of large-sample public biobanks enables highly accurate polygenic predictions based on genetic variants across the whole genome. Various statistical methodologies and diverse computational tools have been introduced and developed to computed the polygenic risk score (PRS) more accurately. However, many researchers utilize PRS tools without a thorough understanding of the underlying model and how to specify the parameters for the best performance. It is advantageous to study the statistical models implemented in computational tools for PRS estimation and the formulas of parameters to be specified. Here, we review a variety of recent statistical methodologies and computational tools for PRS computation.</p>","PeriodicalId":36591,"journal":{"name":"Genomics and Informatics","volume":"19 4","pages":"e36"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752975/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5808/gi.21053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 4

Abstract

Predicting individual traits and diseases from genetic variants is critical to fulfilling the promise of personalized medicine. The genetic variants from genome-wide association studies (GWAS), including variants well below GWAS significance, can be aggregated into highly significant predictions across a wide range of complex traits and diseases. The recent arrival of large-sample public biobanks enables highly accurate polygenic predictions based on genetic variants across the whole genome. Various statistical methodologies and diverse computational tools have been introduced and developed to computed the polygenic risk score (PRS) more accurately. However, many researchers utilize PRS tools without a thorough understanding of the underlying model and how to specify the parameters for the best performance. It is advantageous to study the statistical models implemented in computational tools for PRS estimation and the formulas of parameters to be specified. Here, we review a variety of recent statistical methodologies and computational tools for PRS computation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于预测复杂性状和疾病的统计模型和计算工具。
从基因变异中预测个体特征和疾病对于实现个性化医疗的承诺至关重要。来自全基因组关联研究(GWAS)的遗传变异,包括远低于GWAS显著性的变异,可以汇总成广泛的复杂性状和疾病的高度重要的预测。最近出现的大样本公共生物库使得基于整个基因组的遗传变异的高度精确的多基因预测成为可能。为了更准确地计算多基因风险评分(PRS),已经引入和开发了各种统计方法和各种计算工具。然而,许多研究人员在使用PRS工具时,并没有彻底了解底层模型以及如何指定参数以获得最佳性能。研究在计算工具中实现的统计模型和要指定的参数的公式是有利的。在这里,我们回顾了最近用于PRS计算的各种统计方法和计算工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genomics and Informatics
Genomics and Informatics Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Gut metagenomic analysis of gastric cancer patients reveals Akkermansia, Gammaproteobacteria, and Veillonella microbiota as potential non-invasive biomarkers COVID-19 progression towards ARDS: a genome wide study reveals host factors underlying critical COVID-19. Bioinformatic analyses reveal the prognostic significance and potential role of ankyrin 3 (ANK3) in kidney renal clear cell carcinoma. Comparison of digital PCR platforms using the molecular marker. Single-cell RNA sequencing identifies distinct transcriptomic signatures between PMA/ionomycin- and αCD3/αCD28-activated primary human T cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1