Epigenetic Regulation during Primordial Germ Cell Development and Differentiation.

IF 2.4 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Sexual Development Pub Date : 2021-01-01 Epub Date: 2021-11-30 DOI:10.1159/000520412
Navin B Ramakrishna, Keir Murison, Eric A Miska, Harry G Leitch
{"title":"Epigenetic Regulation during Primordial Germ Cell Development and Differentiation.","authors":"Navin B Ramakrishna, Keir Murison, Eric A Miska, Harry G Leitch","doi":"10.1159/000520412","DOIUrl":null,"url":null,"abstract":"<p><p>Germline development varies significantly across metazoans. However, mammalian primordial germ cell (PGC) development has key conserved landmarks, including a critical period of epigenetic reprogramming that precedes sex-specific differentiation and gametogenesis. Epigenetic alterations in the germline are of unique importance due to their potential to impact the next generation. Therefore, regulation of, and by, the non-coding genome is of utmost importance during these epigenomic events. Here, we detail the key chromatin changes that occur during mammalian PGC development and how these interact with the expression of non-coding RNAs alongside broader epitranscriptomic changes. We identify gaps in our current knowledge, in particular regarding epigenetic regulation in the human germline, and we highlight important areas of future research.</p>","PeriodicalId":49536,"journal":{"name":"Sexual Development","volume":"15 5-6","pages":"411-431"},"PeriodicalIF":2.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sexual Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000520412","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Germline development varies significantly across metazoans. However, mammalian primordial germ cell (PGC) development has key conserved landmarks, including a critical period of epigenetic reprogramming that precedes sex-specific differentiation and gametogenesis. Epigenetic alterations in the germline are of unique importance due to their potential to impact the next generation. Therefore, regulation of, and by, the non-coding genome is of utmost importance during these epigenomic events. Here, we detail the key chromatin changes that occur during mammalian PGC development and how these interact with the expression of non-coding RNAs alongside broader epitranscriptomic changes. We identify gaps in our current knowledge, in particular regarding epigenetic regulation in the human germline, and we highlight important areas of future research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原始生殖细胞发育和分化过程中的表观遗传调控
元古动物的生殖细胞发育差异很大。然而,哺乳动物的原始生殖细胞(PGC)发育具有关键的保守标志,包括在性别特异性分化和配子发生之前的表观遗传重编程关键时期。生殖细胞中的表观遗传改变具有独特的重要性,因为它们有可能影响下一代。因此,在这些表观基因组事件中,非编码基因组的调控至关重要。在这里,我们详细介绍了哺乳动物 PGC 发育过程中发生的关键染色质变化,以及这些变化如何与非编码 RNA 的表达以及更广泛的表观转录组变化相互作用。我们找出了目前知识中的空白,特别是有关人类生殖系表观遗传调控的知识,并强调了未来研究的重要领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sexual Development
Sexual Development 生物-发育生物学
CiteScore
4.00
自引率
4.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: Recent discoveries in experimental and clinical research have led to impressive advances in our knowledge of the genetic and environmental mechanisms governing sex determination and differentiation, their evolution as well as the mutations or endocrine and metabolic abnormalities that interfere with normal gonadal development. ‘Sexual Development’ provides a unique forum for this rapidly expanding field. Its broad scope covers all aspects of genetics, molecular biology, embryology, endocrinology, evolution and pathology of sex determination and differentiation in humans and animals. It publishes high-quality original research manuscripts, review articles, short reports, case reports and commentaries. An internationally renowned and multidisciplinary editorial team of three chief editors, ten prominent scientists serving as section editors, and a distinguished panel of editorial board members ensures fast and author-friendly editorial processing and peer reviewing.
期刊最新文献
One-Step Leaping Evolution from an Autosomal Pair to the Heteromorphic Sex Chromosomes. Exploring Testicular Descent: Recent Findings and Future Prospects in Canine Cryptorchidism. Inhibiting p38α and -β MAPK Affects Testis Development in the Marsupial Tammar Wallaby. Neonatal Hydrocolpos in Bardet-Biedl Syndrome due to a Novel Frameshift Indel in the BBS10 Gene. Prelims
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1