Increasing loop flexibility affords low-temperature adaptation of a moderate thermophilic malate dehydrogenase from Geobacillus stearothermophilus.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Protein Engineering Design & Selection Pub Date : 2021-02-15 DOI:10.1093/protein/gzab026
Yuya Shimozawa, Tomoki Himiyama, Tsutomu Nakamura, Yoshiaki Nishiya
{"title":"Increasing loop flexibility affords low-temperature adaptation of a moderate thermophilic malate dehydrogenase from Geobacillus stearothermophilus.","authors":"Yuya Shimozawa,&nbsp;Tomoki Himiyama,&nbsp;Tsutomu Nakamura,&nbsp;Yoshiaki Nishiya","doi":"10.1093/protein/gzab026","DOIUrl":null,"url":null,"abstract":"<p><p>Malate dehydrogenase (MDH) catalyzes the reversible reduction of nicotinamide adenine dinucleotide from oxaloacetate to L-malate. MDH from moderate thermophilic Geobacillus stearothermophilus (gs-MDH) has high thermal stability and substrate specificity and is used as a diagnostic reagent. In this study, gs-MDH was engineered to increase its catalytic activity at low temperatures. Based on sequential and structural comparison with lactate dehydrogenase from G. stearothermophilus, we selected G218 as a mutation site to increase the loop flexibility pivotal for MDH catalysis. The G218 mutants showed significantly higher specific activities than the wild type at low temperatures and maintained thermal stability. The crystal structure of the G218Y mutant, which had the highest catalytic efficiency among all the G218 mutants, suggested that the flexibility of the mobile loop was successfully increased by the bulky side chain. Therefore, this study demonstrated the low-temperature adaptation of MDH by facilitating conformational changes during catalysis.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering Design & Selection","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzab026","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Malate dehydrogenase (MDH) catalyzes the reversible reduction of nicotinamide adenine dinucleotide from oxaloacetate to L-malate. MDH from moderate thermophilic Geobacillus stearothermophilus (gs-MDH) has high thermal stability and substrate specificity and is used as a diagnostic reagent. In this study, gs-MDH was engineered to increase its catalytic activity at low temperatures. Based on sequential and structural comparison with lactate dehydrogenase from G. stearothermophilus, we selected G218 as a mutation site to increase the loop flexibility pivotal for MDH catalysis. The G218 mutants showed significantly higher specific activities than the wild type at low temperatures and maintained thermal stability. The crystal structure of the G218Y mutant, which had the highest catalytic efficiency among all the G218 mutants, suggested that the flexibility of the mobile loop was successfully increased by the bulky side chain. Therefore, this study demonstrated the low-temperature adaptation of MDH by facilitating conformational changes during catalysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增加环的灵活性提供了中等嗜热苹果酸脱氢酶从嗜热硬脂地杆菌低温适应。
苹果酸脱氢酶(MDH)催化烟酰胺腺嘌呤二核苷酸由草酰乙酸可逆还原为l -苹果酸。来自中等嗜热的嗜热硬脂嗜热地杆菌(gs-MDH)的MDH具有高热稳定性和底物特异性,被用作诊断试剂。在本研究中,对gs-MDH进行了改造,以提高其在低温下的催化活性。通过与G. stearothermophilus的乳酸脱氢酶的序列和结构比较,我们选择了G218作为突变位点,以增加MDH催化的关键环柔韧性。G218突变体在低温条件下表现出明显高于野生型的特异活性,并保持了热稳定性。G218Y突变体的晶体结构在所有G218突变体中具有最高的催化效率,这表明通过粗大的侧链成功地增加了移动环的灵活性。因此,本研究证明了MDH在催化过程中通过促进构象变化来适应低温。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Protein Engineering Design & Selection
Protein Engineering Design & Selection 生物-生化与分子生物学
CiteScore
3.30
自引率
4.20%
发文量
14
审稿时长
6-12 weeks
期刊介绍: Protein Engineering, Design and Selection (PEDS) publishes high-quality research papers and review articles relevant to the engineering, design and selection of proteins for use in biotechnology and therapy, and for understanding the fundamental link between protein sequence, structure, dynamics, function, and evolution.
期刊最新文献
TIMED-Design: flexible and accessible protein sequence design with convolutional neural networks. Correction to: De novo design of a polycarbonate hydrolase. Interactive computational and experimental approaches improve the sensitivity of periplasmic binding protein-based nicotine biosensors for measurements in biofluids. Design of functional intrinsically disordered proteins. The shortest path method (SPM) webserver for computational enzyme design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1