Mannose-binding analysis and biological application of pradimicins.

IF 4.6 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the Japan Academy. Series B, Physical and Biological Sciences Pub Date : 2022-01-01 DOI:10.2183/pjab.98.002
Yu Nakagawa, Yukishige Ito
{"title":"Mannose-binding analysis and biological application of pradimicins.","authors":"Yu Nakagawa,&nbsp;Yukishige Ito","doi":"10.2183/pjab.98.002","DOIUrl":null,"url":null,"abstract":"<p><p>Pradimicins (PRMs) are an exceptional family of natural products that specifically bind d-mannose (Man). In the past decade, their scientific significance has increased greatly, with the emergence of biological roles of Man-containing glycans. However, research into the use of PRMs has been severely limited by their inherent tendency to form water-insoluble aggregates. Recently, we have established a derivatization strategy to suppress PRM aggregation, providing an opportunity for practical application of PRMs in glycobiological research. This article first outlines the challenges in studying Man-binding mechanisms and structural modifications of PRMs, and then describes our approach to address them. We also present our recent attempts toward the development of PRM-based research tools.</p>","PeriodicalId":20707,"journal":{"name":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","volume":"98 1","pages":"15-29"},"PeriodicalIF":4.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/85/6d/pjab-98-015.PMC8795531.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.2183/pjab.98.002","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Pradimicins (PRMs) are an exceptional family of natural products that specifically bind d-mannose (Man). In the past decade, their scientific significance has increased greatly, with the emergence of biological roles of Man-containing glycans. However, research into the use of PRMs has been severely limited by their inherent tendency to form water-insoluble aggregates. Recently, we have established a derivatization strategy to suppress PRM aggregation, providing an opportunity for practical application of PRMs in glycobiological research. This article first outlines the challenges in studying Man-binding mechanisms and structural modifications of PRMs, and then describes our approach to address them. We also present our recent attempts toward the development of PRM-based research tools.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
pradimicins的甘露糖结合分析及生物学应用。
Pradimicins (PRMs)是一种特殊的天然产物家族,专门结合d-甘露糖(Man)。近十年来,随着含人聚糖的生物学作用的出现,其科学意义大大增加。然而,对PRMs使用的研究受到严重限制,因为它们固有的倾向是形成不溶于水的聚集体。最近,我们建立了一种衍生化策略来抑制PRM聚集,为PRM在糖生物学研究中的实际应用提供了机会。本文首先概述了研究PRMs的人结合机制和结构修饰所面临的挑战,然后描述了我们解决这些挑战的方法。我们还介绍了我们最近对基于prm的研究工具的开发的尝试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The Proceedings of the Japan Academy Ser. B (PJA-B) is a scientific publication of the Japan Academy with a 90-year history, and covers all branches of natural sciences, except for mathematics, which is covered by the PJA-A. It is published ten times a year and is distributed widely throughout the world and can be read and obtained free of charge through the world wide web.
期刊最新文献
Statistical and mechanical analysis of multi-pseudopodial locomotion in a testate amoeba, Arcella sp. Spider silk-based structural proteins as tough, biodegradable, and sustainable polymers. Multimodal flexible sensor system toward telediagnosis. Bioorganic studies on the nyctinastic leaf-movement of plants. BRD9 at the crossroads of splicing, chromatin remodeling, and hematopoiesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1