KMT2D deficiency confers a therapeutic vulnerability to glycolytic and IGFR inhibitors in melanoma.

IF 2.6 Q3 ONCOLOGY Molecular and Cellular Oncology Pub Date : 2021-11-01 eCollection Date: 2021-01-01 DOI:10.1080/23723556.2021.1984827
Navya Murugesan, Mayinuer Maitituoheti
{"title":"<i>KMT2D</i> deficiency confers a therapeutic vulnerability to glycolytic and <i>IGFR</i> inhibitors in melanoma.","authors":"Navya Murugesan,&nbsp;Mayinuer Maitituoheti","doi":"10.1080/23723556.2021.1984827","DOIUrl":null,"url":null,"abstract":"<p><p>We reported that histone H3 lysine (K) 4 methyltransferase, <i>KMT2D</i>, serves as a potent tumor-suppressor in melanoma, which was identified via <i>in vivo</i> epigenome-focused RNA interference (RNAi) screen. <i>KMT2D</i>-deficient tumors show substantial reprogramming of key metabolic pathways including glycolysis via reduction of H3K4me1 (Histone H3K4 mono-methylation)-marked active enhancers, conferring sensitivity to inhibitors of glycolysis and IGFR (Insulin Growth Factor Receptor) pathway.</p>","PeriodicalId":37292,"journal":{"name":"Molecular and Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/06/30/KMCO_8_1984827.PMC8632269.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23723556.2021.1984827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

We reported that histone H3 lysine (K) 4 methyltransferase, KMT2D, serves as a potent tumor-suppressor in melanoma, which was identified via in vivo epigenome-focused RNA interference (RNAi) screen. KMT2D-deficient tumors show substantial reprogramming of key metabolic pathways including glycolysis via reduction of H3K4me1 (Histone H3K4 mono-methylation)-marked active enhancers, conferring sensitivity to inhibitors of glycolysis and IGFR (Insulin Growth Factor Receptor) pathway.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
KMT2D缺陷赋予黑色素瘤对糖酵解和IGFR抑制剂的治疗脆弱性。
我们报道了组蛋白H3赖氨酸(K) 4甲基转移酶,KMT2D,在黑色素瘤中作为一种有效的肿瘤抑制因子,通过体内表观基因组聚焦RNA干扰(RNAi)筛选鉴定。kmt2d缺陷肿瘤显示出关键代谢途径的大量重编程,包括通过减少H3K4me1(组蛋白H3K4单甲基化)标记的活性增强子进行糖酵解,赋予糖酵解抑制剂和IGFR(胰岛素生长因子受体)途径的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular and Cellular Oncology
Molecular and Cellular Oncology Biochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
3.20
自引率
0.00%
发文量
18
期刊介绍: For a long time, solid neoplasms have been viewed as relatively homogeneous entities composed for the most part of malignant cells. It is now clear that tumors are highly heterogeneous structures that evolve in the context of intimate interactions between cancer cells and endothelial, stromal as well as immune cells. During the past few years, experimental and clinical oncologists have witnessed several conceptual transitions of this type. Molecular and Cellular Oncology (MCO) emerges within this conceptual framework as a high-profile forum for the publication of fundamental, translational and clinical research on cancer. The scope of MCO is broad. Submissions dealing with all aspects of oncogenesis, tumor progression and response to therapy will be welcome, irrespective of whether they focus on solid or hematological neoplasms. MCO has gathered leading scientists with expertise in multiple areas of cancer research and other fields of investigation to constitute a large, interdisciplinary, Editorial Board that will ensure the quality of articles accepted for publication. MCO will publish Original Research Articles, Brief Reports, Reviews, Short Reviews, Commentaries, Author Views (auto-commentaries) and Meeting Reports dealing with all aspects of cancer research.
期刊最新文献
An antibody-drug conjugate for endometrioid carcinoma based on the expression of cell adhesion molecule 1. The SIRT7-nucleolus connection in cancer: ARF enters the fray. Amino acid deprivation in cancer cells with compensatory autophagy induction increases sensitivity to autophagy inhibitors. Selection forces underlying aneuploidy patterns in cancer. Clemastine and hyperthermia enhance sensitization of osteosarcoma cells for apoptosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1