Csaba P Kovesdy, Adebowale Adebiyi, David Rosenbaum, Jeffrey W Jacobs, L Darryl Quarles
{"title":"Novel Treatments from Inhibition of the Intestinal Sodium-Hydrogen Exchanger 3.","authors":"Csaba P Kovesdy, Adebowale Adebiyi, David Rosenbaum, Jeffrey W Jacobs, L Darryl Quarles","doi":"10.2147/IJNRD.S334024","DOIUrl":null,"url":null,"abstract":"<p><p>Plasma membrane sodium-hydrogen exchangers (NHE) transport Na<sup>+</sup> into cells in exchange for H<sup>+</sup>. While there are nine isoforms of NHE in humans, this review focuses on the NHE3 isoform, which is abundantly expressed in the gastrointestinal tract, where it plays a key role in acid-base balance and water homeostasis. NHE3 inhibition in the small intestine results in luminal sodium and water retention, leading to a general decrease in paracellular water flux and diffusional driving force, reduced intestinal sodium absorption, and increased stool sodium excretion. The resulting softer and more frequent stools are the rationale for the development of tenapanor as a novel, first-in-class NHE3 inhibitor to treat irritable bowel syndrome with constipation. NHE3 also has additional therapeutic implications in nephrology. Inhibition of intestinal NHE3 also lowers blood pressure by reducing intestinal sodium absorption. Perhaps, the most novel effect is its ability to decrease intestinal phosphate absorption by inhibiting the paracellular phosphate absorption pathway. Therefore, selective pharmacological inhibition of NHE3 could be a potential therapeutic strategy to treat not only heart failure and hypertension but also hyperphosphatemia. This review presents an overview of the molecular and physiological functions of NHE3 and discusses how these functions translate to potential clinical applications in nephrology.</p>","PeriodicalId":14181,"journal":{"name":"International Journal of Nephrology and Renovascular Disease","volume":"14 ","pages":"411-420"},"PeriodicalIF":2.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ac/0a/ijnrd-14-411.PMC8646223.pdf","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nephrology and Renovascular Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/IJNRD.S334024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 7
Abstract
Plasma membrane sodium-hydrogen exchangers (NHE) transport Na+ into cells in exchange for H+. While there are nine isoforms of NHE in humans, this review focuses on the NHE3 isoform, which is abundantly expressed in the gastrointestinal tract, where it plays a key role in acid-base balance and water homeostasis. NHE3 inhibition in the small intestine results in luminal sodium and water retention, leading to a general decrease in paracellular water flux and diffusional driving force, reduced intestinal sodium absorption, and increased stool sodium excretion. The resulting softer and more frequent stools are the rationale for the development of tenapanor as a novel, first-in-class NHE3 inhibitor to treat irritable bowel syndrome with constipation. NHE3 also has additional therapeutic implications in nephrology. Inhibition of intestinal NHE3 also lowers blood pressure by reducing intestinal sodium absorption. Perhaps, the most novel effect is its ability to decrease intestinal phosphate absorption by inhibiting the paracellular phosphate absorption pathway. Therefore, selective pharmacological inhibition of NHE3 could be a potential therapeutic strategy to treat not only heart failure and hypertension but also hyperphosphatemia. This review presents an overview of the molecular and physiological functions of NHE3 and discusses how these functions translate to potential clinical applications in nephrology.
期刊介绍:
International Journal of Nephrology and Renovascular Disease is an international, peer-reviewed, open-access journal focusing on the pathophysiology of the kidney and vascular supply. Epidemiology, screening, diagnosis, and treatment interventions are covered as well as basic science, biochemical and immunological studies. In particular, emphasis will be given to: -Chronic kidney disease- Complications of renovascular disease- Imaging techniques- Renal hypertension- Renal cancer- Treatment including pharmacological and transplantation- Dialysis and treatment of complications of dialysis and renal disease- Quality of Life- Patient satisfaction and preference- Health economic evaluations. The journal welcomes submitted papers covering original research, basic science, clinical studies, reviews & evaluations, guidelines, expert opinion and commentary, case reports and extended reports. The main focus of the journal will be to publish research and clinical results in humans but preclinical, animal and in vitro studies will be published where they shed light on disease processes and potential new therapies and interventions.