The rapidly evolving role of cryo-EM in drug design

Q1 Pharmacology, Toxicology and Pharmaceutics Drug Discovery Today: Technologies Pub Date : 2020-12-01 DOI:10.1016/j.ddtec.2020.12.003
Christoph Wigge, Aleksandar Stefanovic, Mazdak Radjainia
{"title":"The rapidly evolving role of cryo-EM in drug design","authors":"Christoph Wigge,&nbsp;Aleksandar Stefanovic,&nbsp;Mazdak Radjainia","doi":"10.1016/j.ddtec.2020.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>Since the early 2010s, cryo-electron microscopy (cryo-EM) has evolved to a mainstream structural biology method in what has been dubbed the “resolution revolution”. Pharma companies also began to use cryo-EM in drug discovery, evidenced by a growing number of industry publications. Hitherto limited in resolution, throughput and attainable molecular weight, cryo-EM is rapidly overcoming its main limitations for more widespread use through a new wave of technological advances. This review discusses how cryo-EM has already impacted drug discovery, and how the state-of-the-art is poised to further revolutionize its application to previously intractable proteins as well as new use cases.</p></div>","PeriodicalId":36012,"journal":{"name":"Drug Discovery Today: Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ddtec.2020.12.003","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today: Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1740674920300366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 17

Abstract

Since the early 2010s, cryo-electron microscopy (cryo-EM) has evolved to a mainstream structural biology method in what has been dubbed the “resolution revolution”. Pharma companies also began to use cryo-EM in drug discovery, evidenced by a growing number of industry publications. Hitherto limited in resolution, throughput and attainable molecular weight, cryo-EM is rapidly overcoming its main limitations for more widespread use through a new wave of technological advances. This review discusses how cryo-EM has already impacted drug discovery, and how the state-of-the-art is poised to further revolutionize its application to previously intractable proteins as well as new use cases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低温电子显微镜在药物设计中的快速发展作用
自2010年初以来,冷冻电子显微镜(cryo-EM)已经发展成为主流的结构生物学方法,被称为“分辨率革命”。制药公司也开始在药物发现中使用低温电镜,越来越多的行业出版物证明了这一点。迄今为止,在分辨率,吞吐量和可获得的分子量方面受到限制,通过新一波的技术进步,低温电子显微镜正在迅速克服其主要限制,以便更广泛地使用。这篇综述讨论了冷冻电镜如何影响药物发现,以及最先进的技术如何准备进一步革新其应用于以前棘手的蛋白质以及新的用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Drug Discovery Today: Technologies
Drug Discovery Today: Technologies Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
自引率
0.00%
发文量
0
期刊介绍: Discovery Today: Technologies compares different technological tools and techniques used from the discovery of new drug targets through to the launch of new medicines.
期刊最新文献
Proteomics advances towards developing SARS-CoV-2 therapeutics using in silico drug repurposing approaches Application of proteomic data in the translation of in vitro observations to associated clinical outcomes Advances in sample preparation for membrane proteome quantification Application of proteomics to understand maturation of drug metabolizing enzymes and transporters for the optimization of pediatric drug therapy Data-independent acquisition (DIA): An emerging proteomics technology for analysis of drug-metabolizing enzymes and transporters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1