Finite element analysis of the tibial component alignment in a transverse plane in total knee arthroplasty.

IF 2 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Journal of applied biomedicine Pub Date : 2021-12-01 Epub Date: 2021-09-20 DOI:10.32725/jab.2021.020
Roman Popescu, Stefan Cristea, Valentin Oleksik, Adrian Marius Pascu, Emil George Haritinian
{"title":"Finite element analysis of the tibial component alignment in a transverse plane in total knee arthroplasty.","authors":"Roman Popescu,&nbsp;Stefan Cristea,&nbsp;Valentin Oleksik,&nbsp;Adrian Marius Pascu,&nbsp;Emil George Haritinian","doi":"10.32725/jab.2021.020","DOIUrl":null,"url":null,"abstract":"<p><p>The research aims to analyze the tibial component rotation using the finite element method by resecting the tibia in a transverse plane at an angle between 1.5° (external rotation) and -1.5° (internal rotation). We used a three-dimensional scanner to obtain the tibia's geometrical model of a cadaveric specimen. We then exported the surfaces of the tibial geometrical model through the Computer-Aided Three-dimensional Interactive Application (CATIA), which is a Computer-Aided Design (CAD) program. The CAD program three-dimensionally shaped the tibial component, polyethylene, and cement. Our analysis determined that the maximum equivalent stress is obtained in the case of proximal tibial resection at -1.5° angle in a transverse plane (internal rotation) with a value of 12.75 MPa, which is also obtained for the polyethylene (7.693 MPa) and cement (6.6 MPa). The results have shown that detrimental effects begin to occur at -1.5°. We propose the use of this finite element method to simulate the positioning of the tibial component at different tibial resection angles to appreciate the optimal rotation.</p>","PeriodicalId":14912,"journal":{"name":"Journal of applied biomedicine","volume":"19 4","pages":"234-239"},"PeriodicalIF":2.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.32725/jab.2021.020","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The research aims to analyze the tibial component rotation using the finite element method by resecting the tibia in a transverse plane at an angle between 1.5° (external rotation) and -1.5° (internal rotation). We used a three-dimensional scanner to obtain the tibia's geometrical model of a cadaveric specimen. We then exported the surfaces of the tibial geometrical model through the Computer-Aided Three-dimensional Interactive Application (CATIA), which is a Computer-Aided Design (CAD) program. The CAD program three-dimensionally shaped the tibial component, polyethylene, and cement. Our analysis determined that the maximum equivalent stress is obtained in the case of proximal tibial resection at -1.5° angle in a transverse plane (internal rotation) with a value of 12.75 MPa, which is also obtained for the polyethylene (7.693 MPa) and cement (6.6 MPa). The results have shown that detrimental effects begin to occur at -1.5°. We propose the use of this finite element method to simulate the positioning of the tibial component at different tibial resection angles to appreciate the optimal rotation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全膝关节置换术中胫骨构件在横切面内对齐的有限元分析。
本研究以1.5°(外旋)和-1.5°(内旋)夹角在横切面上切除胫骨,采用有限元法分析胫骨构件旋转。我们使用三维扫描仪获得了尸体标本胫骨的几何模型。然后,我们通过计算机辅助三维交互应用程序(CATIA)导出胫骨几何模型的表面,这是一种计算机辅助设计(CAD)程序。CAD程序对胫骨部件、聚乙烯和水泥进行三维塑形。我们的分析确定,在胫骨近端以横向-1.5°角切除(内旋转)时获得的最大等效应力值为12.75 MPa,聚乙烯(7.693 MPa)和水泥(6.6 MPa)也获得了最大等效应力。结果表明,有害影响在-1.5°c时开始出现。我们建议使用这种有限元方法来模拟胫骨部件在不同胫骨切除角度下的定位,以获得最佳旋转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of applied biomedicine
Journal of applied biomedicine PHARMACOLOGY & PHARMACY-
CiteScore
2.40
自引率
7.70%
发文量
13
审稿时长
>12 weeks
期刊介绍: Journal of Applied Biomedicine promotes translation of basic biomedical research into clinical investigation, conversion of clinical evidence into practice in all medical fields, and publication of new ideas for conquering human health problems across disciplines. Providing a unique perspective, this international journal publishes peer-reviewed original papers and reviews offering a sensible transfer of basic research to applied clinical medicine. Journal of Applied Biomedicine covers the latest developments in various fields of biomedicine with special attention to cardiology and cardiovascular diseases, genetics, immunology, environmental health, toxicology, neurology and oncology as well as multidisciplinary studies. The views of experts on current advances in nanotechnology and molecular/cell biology will be also considered for publication as long as they have a direct clinical impact on human health. The journal does not accept basic science research or research without significant clinical implications. Manuscripts with innovative ideas and approaches that bridge different fields and show clear perspectives for clinical applications are considered with top priority.
期刊最新文献
Anti-NMDAR1 antibody impairs dendritic branching in immature cultured neurons. Astragaloside IV confronts amyloid-beta-induced astrocyte senescence via hsp90aa1. In vitro biological activities of Calamintha nepeta L. aqueous extracts. Olfactory event-related potentials (OERPs) and trigeminal event-related potentials (TERPs) in subjects after Covid-19 infection: single-center prospective study. Salivary glands - a new site of Helicobacter pylori occurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1