Stochastic Bioimpedance-Based Channel Model of The Human Body for Galvanic Coupling.

Q3 Biochemistry, Genetics and Molecular Biology Journal of Electrical Bioimpedance Pub Date : 2021-12-27 eCollection Date: 2021-01-01 DOI:10.2478/joeb-2021-0014
Aaron Roopnarine, Sean A Rocke
{"title":"Stochastic Bioimpedance-Based Channel Model of The Human Body for Galvanic Coupling.","authors":"Aaron Roopnarine, Sean A Rocke","doi":"10.2478/joeb-2021-0014","DOIUrl":null,"url":null,"abstract":"<p><p>Human body communication (HBC) uses the human body as the channel to transfer data. Extensive work has been done to characterize the human body channel for different HBC techniques and scenarios. However, statistical channel bioimpedance characterisation of human body channels, particularly under dynamic conditions, remains relatively understudied. This paper develops a stochastic fading bioimpedance model for the human body channel using Monte Carlo simulations. Differential body segments were modelled as 2-port networks using ABCD parameters which are functions of bioimpedance based body parameters modelled as random variables. The channel was then modelled as the cascade of these random 2-port networks for different combinations of probability distribution functions (PDFs) assumed for the bioimpedance-based body parameters. The resultant distribution of the cascaded body segments varied for the different assumed bioimpedance based body parameter distributions and differential body segment sizes. However, considering the distribution names that demonstrated a best fit (in the top 3 PDF rankings) with highest frequency under the varying conditions, this paper recommends the distribution names: Generalized Pareto for phase distributions and Log-normal for magnitude distributions for each element in the overall cascaded random variable ABCD matrix.</p>","PeriodicalId":38125,"journal":{"name":"Journal of Electrical Bioimpedance","volume":"12 1","pages":"117-124"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8713383/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Bioimpedance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/joeb-2021-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Human body communication (HBC) uses the human body as the channel to transfer data. Extensive work has been done to characterize the human body channel for different HBC techniques and scenarios. However, statistical channel bioimpedance characterisation of human body channels, particularly under dynamic conditions, remains relatively understudied. This paper develops a stochastic fading bioimpedance model for the human body channel using Monte Carlo simulations. Differential body segments were modelled as 2-port networks using ABCD parameters which are functions of bioimpedance based body parameters modelled as random variables. The channel was then modelled as the cascade of these random 2-port networks for different combinations of probability distribution functions (PDFs) assumed for the bioimpedance-based body parameters. The resultant distribution of the cascaded body segments varied for the different assumed bioimpedance based body parameter distributions and differential body segment sizes. However, considering the distribution names that demonstrated a best fit (in the top 3 PDF rankings) with highest frequency under the varying conditions, this paper recommends the distribution names: Generalized Pareto for phase distributions and Log-normal for magnitude distributions for each element in the overall cascaded random variable ABCD matrix.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机生物阻抗的人体电耦合通道模型
人体通信(HBC)利用人体作为传输数据的信道。针对不同的 HBC 技术和场景,已经开展了大量工作来描述人体信道的特性。然而,对人体信道的统计信道生物阻抗表征,尤其是动态条件下的表征,研究仍相对不足。本文利用蒙特卡罗模拟建立了人体信道随机衰减生物阻抗模型。使用 ABCD 参数将差分人体段模拟为 2 端口网络,ABCD 参数是基于生物阻抗的人体参数的函数,被模拟为随机变量。然后,根据基于生物阻抗的人体参数的不同概率分布函数(PDF)组合,将通道模拟为这些随机 2 端口网络的级联。根据不同的基于生物阻抗的人体参数分布和不同的体段大小,级联体段的分布结果各不相同。然而,考虑到在不同条件下显示出最佳拟合(PDF 排名前 3 位)且频率最高的分布名称,本文推荐了这些分布名称:对于整个级联随机变量 ABCD 矩阵中的每个元素,相位分布采用广义帕累托分布,幅值分布采用对数正态分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electrical Bioimpedance
Journal of Electrical Bioimpedance Engineering-Biomedical Engineering
CiteScore
3.00
自引率
0.00%
发文量
8
审稿时长
17 weeks
期刊最新文献
Effects of acute essential amino acid intake on post-prandial raw bioimpedance and fluid shifts between healthy young and older adults: An exploratory pilot study. Cell membrane capacitance relationship to reference-measured body composition parameters in young adult athletes. Electrical impedance myography as a marker of muscle mass in rats with simulated Anorexia Nervosa. Assessing the consistency between the anthropometric method and bioelectrical impedance analysis when calculating the Heath-Carter somatotype in people without obesity: a cross-sectional study. Predictive classification and regression models for bioimpedance vector analysis: Insights from a southern Cuban cohort.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1