Microstructural Properties of Human Brain Revealed by Fractional Anisotropy Can Predict the After-Effect of Intermittent Theta Burst Stimulation.

Cerebral cortex communications Pub Date : 2021-12-15 eCollection Date: 2022-01-01 DOI:10.1093/texcom/tgab065
Ikko Kimura, Hiroki Oishi, Masamichi J Hayashi, Kaoru Amano
{"title":"Microstructural Properties of Human Brain Revealed by Fractional Anisotropy Can Predict the After-Effect of Intermittent Theta Burst Stimulation.","authors":"Ikko Kimura,&nbsp;Hiroki Oishi,&nbsp;Masamichi J Hayashi,&nbsp;Kaoru Amano","doi":"10.1093/texcom/tgab065","DOIUrl":null,"url":null,"abstract":"<p><p>Intermittent theta burst stimulation (iTBS) delivered by transcranial magnetic stimulation (TMS) produces a long-term potentiation-like after-effect useful for investigations of cortical function and of potential therapeutic value. However, the iTBS after-effect over the primary motor cortex (M1) as measured by changes in motor evoked potential (MEP) amplitude exhibits a largely unexplained variability across individuals. Here, we present evidence that individual differences in white matter (WM) and gray matter (GM) microstructural properties revealed by fractional anisotropy (FA) predict the magnitude of the iTBS-induced after-effect over M1. The MEP amplitude change in the early phase (5-10 min post-iTBS) was associated with FA values in WM tracts such as right superior longitudinal fasciculus and corpus callosum. By contrast, the MEP amplitude change in the late phase (15-30 min post-iTBS) was associated with FA in GM, primarily in right frontal cortex. These results suggest that the microstructural properties of regions connected directly or indirectly to the target region (M1) are crucial determinants of the iTBS after-effect. FA values indicative of these microstructural differences can predict the potential effectiveness of repetitive TMS for both investigational use and clinical application.</p>","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":" ","pages":"tgab065"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8784864/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/texcom/tgab065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Intermittent theta burst stimulation (iTBS) delivered by transcranial magnetic stimulation (TMS) produces a long-term potentiation-like after-effect useful for investigations of cortical function and of potential therapeutic value. However, the iTBS after-effect over the primary motor cortex (M1) as measured by changes in motor evoked potential (MEP) amplitude exhibits a largely unexplained variability across individuals. Here, we present evidence that individual differences in white matter (WM) and gray matter (GM) microstructural properties revealed by fractional anisotropy (FA) predict the magnitude of the iTBS-induced after-effect over M1. The MEP amplitude change in the early phase (5-10 min post-iTBS) was associated with FA values in WM tracts such as right superior longitudinal fasciculus and corpus callosum. By contrast, the MEP amplitude change in the late phase (15-30 min post-iTBS) was associated with FA in GM, primarily in right frontal cortex. These results suggest that the microstructural properties of regions connected directly or indirectly to the target region (M1) are crucial determinants of the iTBS after-effect. FA values indicative of these microstructural differences can predict the potential effectiveness of repetitive TMS for both investigational use and clinical application.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分数各向异性揭示的人脑微观结构特性可以预测间歇性θ波脉冲刺激的后效。
经颅磁刺激(TMS)带来的间歇性θ波爆发刺激(iTBS)产生一种长时程增强效应,对皮质功能的研究和潜在的治疗价值很有用。然而,通过运动诱发电位(MEP)振幅的变化来测量的iTBS对初级运动皮层(M1)的后效在个体之间表现出很大程度上无法解释的差异。在这里,我们提出证据表明,分数各向异性(FA)揭示的白质(WM)和灰质(GM)微观结构特性的个体差异预测了itbs诱导的M1后效应的大小。早期(itbs后5-10 min) MEP振幅变化与右侧上纵束和胼胝体等WM束的FA值相关。相比之下,晚期(itbs后15-30分钟)的MEP振幅变化与GM的FA有关,主要发生在右侧额叶皮层。这些结果表明,与靶区(M1)直接或间接连接的区域的微观结构特性是iTBS后效的关键决定因素。指示这些微观结构差异的FA值可以预测重复经颅磁刺激在研究和临床应用中的潜在有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
17 weeks
期刊最新文献
On the coupling and decoupling of mind wandering and perception: a shared metabolism account. Striatal correlates of Bayesian beliefs in self-efficacy in adolescents and their relation to mood and autonomy: a pilot study Frontal mechanisms underlying primate calls recognition by humans Detection and characterization of resting state functional networks in squirrel monkey brain. Methamphetamine enhances neural activation during anticipation of loss in the monetary incentive delay task.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1