Sex-Dependent Inheritance of B Chromosomes in Psalidodon paranae (Teleostei, Characiformes) Revealed by Directed Crossings.

IF 1.4 4区 生物学 Q4 DEVELOPMENTAL BIOLOGY Zebrafish Pub Date : 2021-12-01 DOI:10.1089/zeb.2021.0053
Caio Augusto Gomes Goes, Duílio Mazzoni Zerbinato de Andrade Silva, Ricardo Utsunomia, Nivaldo Ferreira do Nascimento, George Shigueki Yasui, José Augusto Senhorini, Diogo Teruo Hashimoto, Roberto Ferreira Artoni, Fausto Foresti, Fábio Porto-Foresti
{"title":"Sex-Dependent Inheritance of B Chromosomes in <i>Psalidodon paranae</i> (Teleostei, Characiformes) Revealed by Directed Crossings.","authors":"Caio Augusto Gomes Goes,&nbsp;Duílio Mazzoni Zerbinato de Andrade Silva,&nbsp;Ricardo Utsunomia,&nbsp;Nivaldo Ferreira do Nascimento,&nbsp;George Shigueki Yasui,&nbsp;José Augusto Senhorini,&nbsp;Diogo Teruo Hashimoto,&nbsp;Roberto Ferreira Artoni,&nbsp;Fausto Foresti,&nbsp;Fábio Porto-Foresti","doi":"10.1089/zeb.2021.0053","DOIUrl":null,"url":null,"abstract":"<p><p>B chromosomes are additional dispensable elements to the standard chromosomal set of an organism. In most cases, their transmission differs from Mendelian patterns, leading to their accumulation or extinction. The present study aimed to describe, for the first time, the transmission pattern of B chromosome in a population of <i>Psalidodon paranae</i> through directed crosses, as well as to analyze the populational dynamics of B chromosome. Our results revealed the possible elimination of B chromosome in crossings where only females were B-carriers, with a mean transmission rate (<i>k</i><sub>B</sub>) of 0.149; however, <i>k</i><sub>B</sub> was significantly higher in crossings involving male B-carriers (<i>k</i><sub>B</sub> = 0.328-0.450). Moreover, we observed an increase in the frequency of B chromosomes in the natural population of <i>P. paranae</i> in the last two decades. These apparently contradictory results can make sense if the B chromosome provides adaptive advantages to their carriers. Here, we observed a differential transmission of B chromosomes in each sex of parental individuals, with higher transmission rates in crossing involving males B-carriers, in addition to describe the temporal changes of B chromosome frequency in <i>P. paranae</i>.</p>","PeriodicalId":23872,"journal":{"name":"Zebrafish","volume":"18 6","pages":"363-368"},"PeriodicalIF":1.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zebrafish","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2021.0053","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

B chromosomes are additional dispensable elements to the standard chromosomal set of an organism. In most cases, their transmission differs from Mendelian patterns, leading to their accumulation or extinction. The present study aimed to describe, for the first time, the transmission pattern of B chromosome in a population of Psalidodon paranae through directed crosses, as well as to analyze the populational dynamics of B chromosome. Our results revealed the possible elimination of B chromosome in crossings where only females were B-carriers, with a mean transmission rate (kB) of 0.149; however, kB was significantly higher in crossings involving male B-carriers (kB = 0.328-0.450). Moreover, we observed an increase in the frequency of B chromosomes in the natural population of P. paranae in the last two decades. These apparently contradictory results can make sense if the B chromosome provides adaptive advantages to their carriers. Here, we observed a differential transmission of B chromosomes in each sex of parental individuals, with higher transmission rates in crossing involving males B-carriers, in addition to describe the temporal changes of B chromosome frequency in P. paranae.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用定向杂交揭示的paridodon parae (Teleostei,性状)B染色体的性别依赖遗传。
B染色体是生物体标准染色体组中额外的可有可无的元素。在大多数情况下,它们的传播与孟德尔模式不同,导致它们的积累或灭绝。本研究首次通过定向杂交的方法,描述了白蜡石斛(Psalidodon paranae)群体中B染色体的传播模式,并对B染色体的种群动态进行了分析。结果表明,在只有雌性携带B染色体的杂交中,B染色体可能被消除,平均传播率(kB)为0.149;而男性b -携带者杂交的kB显著高于男性(kB = 0.328 ~ 0.450)。此外,我们观察到在过去的二十年中,自然种群中B染色体的频率有所增加。如果B染色体为它们的携带者提供了适应性优势,那么这些明显矛盾的结果就有了意义。在本研究中,我们观察到B染色体在亲本各性别个体中的差异传递,在涉及雄性B染色体携带者的杂交中传播率更高,此外,我们还描述了P. parae中B染色体频率的时间变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Zebrafish
Zebrafish DEVELOPMENTAL BIOLOGY-ZOOLOGY
CiteScore
3.60
自引率
5.00%
发文量
29
审稿时长
3 months
期刊介绍: Zebrafish is the only peer-reviewed journal dedicated to the central role of zebrafish and other aquarium species as models for the study of vertebrate development, evolution, toxicology, and human disease. Due to its prolific reproduction and the external development of the transparent embryo, the zebrafish is a prime model for genetic and developmental studies. While genetically more distant from humans, the vertebrate zebrafish nevertheless has comparable organs and tissues, such as heart, kidney, pancreas, bones, and cartilage. Zebrafish introduced the new section TechnoFish, which highlights these innovations for the general zebrafish community. TechnoFish features two types of articles: TechnoFish Previews: Important, generally useful technical advances or valuable transgenic lines TechnoFish Methods: Brief descriptions of new methods, reagents, or transgenic lines that will be of widespread use in the zebrafish community Zebrafish coverage includes: Comparative genomics and evolution Molecular/cellular mechanisms of cell growth Genetic analysis of embryogenesis and disease Toxicological and infectious disease models Models for neurological disorders and aging New methods, tools, and experimental approaches Zebrafish also includes research with other aquarium species such as medaka, Fugu, and Xiphophorus.
期刊最新文献
Fish in a Dish: Using Zebrafish in Authentic Science Research Experiences for Under-represented High School Students from West Virginia. Novel Development of Magnetic Resonance Imaging to Quantify the Structural Anatomic Growth of Diverse Organs in Adult and Mutant Zebrafish. Zebrafish (Danio rerio) Gynogenetic Production by Heat Shock: Comparison Between Mitotic and Meiotic Treatment. Curcumin-Encapsulated Nanomicelles Promote Tissue Regeneration in Zebrafish Eleutheroembryo. Incorporating Primer Amplification Efficiencies in Quantitative Reverse Transcription Polymerase Chain Reaction Experiments; Considerations for Differential Gene Expression Analyses in Zebrafish.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1