James I Barr, Catherine A Boisvert, Philip W Bateman
{"title":"At What Cost? Trade-Offs and Influences on Energetic Investment in Tail Regeneration in Lizards Following Autotomy.","authors":"James I Barr, Catherine A Boisvert, Philip W Bateman","doi":"10.3390/jdb9040053","DOIUrl":null,"url":null,"abstract":"<p><p>Caudal autotomy, the ability to shed a portion of the tail, is a widespread defence strategy among lizards. Following caudal autotomy, and during regeneration, lizards face both short- and long-term costs associated with the physical loss of the tail and the energy required for regeneration. As such, the speed at which the individual regenerates its tail (regeneration rate) should reflect the fitness priorities of the individual. However, multiple factors influence the regeneration rate in lizards, making inter-specific comparisons difficult and hindering broader scale investigations. We review regeneration rates for lizards and tuatara from the published literature, discuss how species' fitness priorities and regeneration rates are influenced by specific, life history and environmental factors, and provide recommendations for future research. Regeneration rates varied extensively (0-4.3 mm/day) across the 56 species from 14 family groups. Species-specific factors, influencing regeneration rates, varied based on the type of fracture plane, age, sex, reproductive season, and longevity. Environmental factors including temperature, photoperiod, nutrition, and stress also affected regeneration rates, as did the method of autotomy induction, and the position of the tail also influenced regeneration rates for lizards. Additionally, regeneration could alter an individual's behaviour, growth, and reproductive output, but this varied depending on the species.</p>","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":"9 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709428/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jdb9040053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Caudal autotomy, the ability to shed a portion of the tail, is a widespread defence strategy among lizards. Following caudal autotomy, and during regeneration, lizards face both short- and long-term costs associated with the physical loss of the tail and the energy required for regeneration. As such, the speed at which the individual regenerates its tail (regeneration rate) should reflect the fitness priorities of the individual. However, multiple factors influence the regeneration rate in lizards, making inter-specific comparisons difficult and hindering broader scale investigations. We review regeneration rates for lizards and tuatara from the published literature, discuss how species' fitness priorities and regeneration rates are influenced by specific, life history and environmental factors, and provide recommendations for future research. Regeneration rates varied extensively (0-4.3 mm/day) across the 56 species from 14 family groups. Species-specific factors, influencing regeneration rates, varied based on the type of fracture plane, age, sex, reproductive season, and longevity. Environmental factors including temperature, photoperiod, nutrition, and stress also affected regeneration rates, as did the method of autotomy induction, and the position of the tail also influenced regeneration rates for lizards. Additionally, regeneration could alter an individual's behaviour, growth, and reproductive output, but this varied depending on the species.
期刊介绍:
The Journal of Developmental Biology (ISSN 2221-3759) is an international, peer-reviewed, quick-refereeing, open access journal, which publishes reviews, research papers and communications on the development of multicellular organisms at the molecule, cell, tissue, organ and whole organism levels. Our aim is to encourage researchers to effortlessly publish their new findings or concepts rapidly in an open access medium, overseen by their peers. There is no restriction on the length of the papers; the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Journal of Developmental Biology focuses on: -Development mechanisms and genetics -Cell differentiation -Embryonal development -Tissue/organism growth -Metamorphosis and regeneration of the organisms. It involves many biological fields, such as Molecular biology, Genetics, Physiology, Cell biology, Anatomy, Embryology, Cancer research, Neurobiology, Immunology, Ecology, Evolutionary biology.