Molecular Mapping of Urinary Complement Peptides in Kidney Diseases.

IF 4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Proteomes Pub Date : 2021-12-13 DOI:10.3390/proteomes9040049
Ralph Wendt, Justyna Siwy, Tianlin He, Agnieszka Latosinska, Thorsten Wiech, Peter F Zipfel, Aggeliki Tserga, Antonia Vlahou, Harald Rupprecht, Lorenzo Catanese, Harald Mischak, Joachim Beige
{"title":"Molecular Mapping of Urinary Complement Peptides in Kidney Diseases.","authors":"Ralph Wendt,&nbsp;Justyna Siwy,&nbsp;Tianlin He,&nbsp;Agnieszka Latosinska,&nbsp;Thorsten Wiech,&nbsp;Peter F Zipfel,&nbsp;Aggeliki Tserga,&nbsp;Antonia Vlahou,&nbsp;Harald Rupprecht,&nbsp;Lorenzo Catanese,&nbsp;Harald Mischak,&nbsp;Joachim Beige","doi":"10.3390/proteomes9040049","DOIUrl":null,"url":null,"abstract":"<p><p>Defective complement activation has been associated with various types of kidney disease. This led to the hypothesis that specific urine complement fragments may be associated with kidney disease etiologies, and disease progression may be reflected by changes in these complement fragments. We investigated the occurrence of complement fragments in urine, their association with kidney function and disease etiology in 16,027 subjects, using mass spectrometry based peptidomics data from the Human Urinary Proteome/Peptidome Database. Twenty-three different urinary peptides originating from complement proteins C3, C4 and factor B (CFB) could be identified. Most C3-derived peptides showed inverse association with estimated glomerular filtration rate (eGFR), while the majority of peptides derived from CFB demonstrated positive association with eGFR. Several peptides derived from the complement proteins C3, C4 and CFB were found significantly associated with specific kidney disease etiologies. These peptides may depict disease-specific complement activation and could serve as non-invasive biomarkers to support development of complement interventions through assessing complement activity for patients' stratification and monitoring of drug impact. Further investigation of these complement peptides may provide additional insight into disease pathophysiology and could possibly guide therapeutic decisions, especially when targeting complement factors.</p>","PeriodicalId":20877,"journal":{"name":"Proteomes","volume":"9 4","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8709096/pdf/","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/proteomes9040049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 7

Abstract

Defective complement activation has been associated with various types of kidney disease. This led to the hypothesis that specific urine complement fragments may be associated with kidney disease etiologies, and disease progression may be reflected by changes in these complement fragments. We investigated the occurrence of complement fragments in urine, their association with kidney function and disease etiology in 16,027 subjects, using mass spectrometry based peptidomics data from the Human Urinary Proteome/Peptidome Database. Twenty-three different urinary peptides originating from complement proteins C3, C4 and factor B (CFB) could be identified. Most C3-derived peptides showed inverse association with estimated glomerular filtration rate (eGFR), while the majority of peptides derived from CFB demonstrated positive association with eGFR. Several peptides derived from the complement proteins C3, C4 and CFB were found significantly associated with specific kidney disease etiologies. These peptides may depict disease-specific complement activation and could serve as non-invasive biomarkers to support development of complement interventions through assessing complement activity for patients' stratification and monitoring of drug impact. Further investigation of these complement peptides may provide additional insight into disease pathophysiology and could possibly guide therapeutic decisions, especially when targeting complement factors.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肾脏疾病尿补体肽的分子定位。
补体激活缺陷与各种类型的肾脏疾病有关。这导致了一种假设,即特定的尿液补体片段可能与肾脏疾病的病因有关,疾病的进展可能通过这些补体片段的变化来反映。我们研究了16027名受试者尿液中补体片段的发生,它们与肾功能和疾病病因的关系,使用基于质谱的人类尿蛋白质组/肽球数据库的肽组学数据。共鉴定出来自补体蛋白C3、C4和因子B (CFB)的23种不同的尿肽。大多数c3衍生多肽与估计的肾小球滤过率(eGFR)呈负相关,而大多数CFB衍生多肽与eGFR呈正相关。从补体蛋白C3、C4和CFB衍生的一些肽被发现与特定的肾脏疾病病因显著相关。这些肽可以描述疾病特异性补体激活,并可以作为非侵入性生物标志物,通过评估补体活性来支持补体干预措施的发展,从而实现患者分层和监测药物影响。对这些补体肽的进一步研究可能会为疾病病理生理学提供更多的见解,并可能指导治疗决策,特别是当针对补体因子时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proteomes
Proteomes Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.50
自引率
3.00%
发文量
37
审稿时长
11 weeks
期刊介绍: Proteomes (ISSN 2227-7382) is an open access, peer reviewed journal on all aspects of proteome science. Proteomes covers the multi-disciplinary topics of structural and functional biology, protein chemistry, cell biology, methodology used for protein analysis, including mass spectrometry, protein arrays, bioinformatics, HTS assays, etc. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers. Scope: -whole proteome analysis of any organism -disease/pharmaceutical studies -comparative proteomics -protein-ligand/protein interactions -structure/functional proteomics -gene expression -methodology -bioinformatics -applications of proteomics
期刊最新文献
The Non-Linear Profile of Aging: U-Shaped Expression of Myostatin, Follistatin and Intermediate Signals in a Longitudinal In Vitro Murine Cell Sarcopenia Model. Assessment of Data-Independent Acquisition Mass Spectrometry (DIA-MS) for the Identification of Single Amino Acid Variants. Transcriptomics Revealed Differentially Expressed Transcription Factors and MicroRNAs in Human Diabetic Foot Ulcers. Comparative Proteome-Wide Abundance Profiling of Yeast Strains Deleted for Cdc48 Adaptors. Multiple Reaction Monitoring-Mass Spectrometric Immunoassay Analysis of Parathyroid Hormone Fragments with Vitamin D Deficiency in Patients with Diabetes Mellitus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1