H Evenbratt, L Andreasson, V Bicknell, M Brittberg, R Mobini, S Simonsson
{"title":"Insights into the present and future of cartilage regeneration and joint repair.","authors":"H Evenbratt, L Andreasson, V Bicknell, M Brittberg, R Mobini, S Simonsson","doi":"10.1186/s13619-021-00104-5","DOIUrl":null,"url":null,"abstract":"<p><p>Knee osteoarthritis is the most common joint disease. It causes pain and suffering for affected patients and is the source of major economic costs for healthcare systems. Despite ongoing research, there is a lack of knowledge regarding disease mechanisms, biomarkers, and possible cures. Current treatments do not fulfill patients' long-term needs, and it often requires invasive surgical procedures with subsequent long periods of rehabilitation. Researchers and companies worldwide are working to find a suitable cell source to engineer or regenerate a functional and healthy articular cartilage tissue to implant in the damaged area. Potential cell sources to accomplish this goal include embryonic stem cells, mesenchymal stem cells, or induced pluripotent stem cells. The differentiation of stem cells into different tissue types is complex, and a suitable concentration range of specific growth factors is vital. The cellular microenvironment during early embryonic development provides crucial information regarding concentrations of signaling molecules and morphogen gradients as these are essential inducers for tissue development. Thus, morphogen gradients implemented in developmental protocols aimed to engineer functional cartilage tissue can potentially generate cells comparable to those within native cartilage. In this review, we have summarized the problems with current treatments, potential cell sources for cell therapy, reviewed the progress of new treatments within the regenerative cartilage field, and highlighted the importance of cell quality, characterization assays, and chemically defined protocols.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":" ","pages":"3"},"PeriodicalIF":5.5000,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8807792/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13619-021-00104-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Knee osteoarthritis is the most common joint disease. It causes pain and suffering for affected patients and is the source of major economic costs for healthcare systems. Despite ongoing research, there is a lack of knowledge regarding disease mechanisms, biomarkers, and possible cures. Current treatments do not fulfill patients' long-term needs, and it often requires invasive surgical procedures with subsequent long periods of rehabilitation. Researchers and companies worldwide are working to find a suitable cell source to engineer or regenerate a functional and healthy articular cartilage tissue to implant in the damaged area. Potential cell sources to accomplish this goal include embryonic stem cells, mesenchymal stem cells, or induced pluripotent stem cells. The differentiation of stem cells into different tissue types is complex, and a suitable concentration range of specific growth factors is vital. The cellular microenvironment during early embryonic development provides crucial information regarding concentrations of signaling molecules and morphogen gradients as these are essential inducers for tissue development. Thus, morphogen gradients implemented in developmental protocols aimed to engineer functional cartilage tissue can potentially generate cells comparable to those within native cartilage. In this review, we have summarized the problems with current treatments, potential cell sources for cell therapy, reviewed the progress of new treatments within the regenerative cartilage field, and highlighted the importance of cell quality, characterization assays, and chemically defined protocols.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.