IDEAL approach to the evaluation of machine learning technology in epilepsy surgery: protocol for the MAST trial.

IF 2.1 Q2 SURGERY BMJ Surgery Interventions Health Technologies Pub Date : 2022-01-27 eCollection Date: 2022-01-01 DOI:10.1136/bmjsit-2021-000109
Aswin Chari, Sophie Adler, Konrad Wagstyl, Kiran Seunarine, Hani Marcus, Torsten Baldeweg, Martin Tisdall
{"title":"IDEAL approach to the evaluation of machine learning technology in epilepsy surgery: protocol for the MAST trial.","authors":"Aswin Chari, Sophie Adler, Konrad Wagstyl, Kiran Seunarine, Hani Marcus, Torsten Baldeweg, Martin Tisdall","doi":"10.1136/bmjsit-2021-000109","DOIUrl":null,"url":null,"abstract":"<p><p>Epilepsy and epilepsy surgery lend themselves well to the application of machine learning (ML) and artificial intelligence (AI) technologies. This is evidenced by the plethora of tools developed for applications such as seizure detection and analysis of imaging and electrophysiological data. However, few of these tools have been directly used to guide patient management. In recent years, the Idea, Development, Exploration, Assessment, Long-Term Follow-Up (IDEAL) collaboration has formalised stages for the evaluation of surgical innovation and medical devices, and, in many ways, this pragmatic framework is also applicable to ML/AI technology, balancing innovation and safety. In this protocol paper, we outline the preclinical (IDEAL stage 0) evaluation and the protocol for a prospective (IDEAL stage 1/2a) study to evaluate the utility of an ML lesion detection algorithm designed to detect focal cortical dysplasia from structural MRI, as an adjunct in the planning of stereoelectroencephalography trajectories in children undergoing intracranial evaluation for drug-resistant epilepsy.</p>","PeriodicalId":33349,"journal":{"name":"BMJ Surgery Interventions Health Technologies","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f7/fb/bmjsit-2021-000109.PMC8796270.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Surgery Interventions Health Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjsit-2021-000109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

Abstract

Epilepsy and epilepsy surgery lend themselves well to the application of machine learning (ML) and artificial intelligence (AI) technologies. This is evidenced by the plethora of tools developed for applications such as seizure detection and analysis of imaging and electrophysiological data. However, few of these tools have been directly used to guide patient management. In recent years, the Idea, Development, Exploration, Assessment, Long-Term Follow-Up (IDEAL) collaboration has formalised stages for the evaluation of surgical innovation and medical devices, and, in many ways, this pragmatic framework is also applicable to ML/AI technology, balancing innovation and safety. In this protocol paper, we outline the preclinical (IDEAL stage 0) evaluation and the protocol for a prospective (IDEAL stage 1/2a) study to evaluate the utility of an ML lesion detection algorithm designed to detect focal cortical dysplasia from structural MRI, as an adjunct in the planning of stereoelectroencephalography trajectories in children undergoing intracranial evaluation for drug-resistant epilepsy.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估癫痫手术中机器学习技术的 IDEAL 方法:MAST 试验协议。
癫痫和癫痫手术非常适合应用机器学习(ML)和人工智能(AI)技术。为癫痫发作检测以及成像和电生理数据分析等应用而开发的大量工具就证明了这一点。然而,这些工具很少被直接用于指导患者管理。近年来,"构思、开发、探索、评估、长期跟踪"(IDEAL)合作正式确定了手术创新和医疗设备的评估阶段,在很多方面,这一务实的框架也适用于 ML/AI 技术,在创新和安全之间取得平衡。在本协议文件中,我们概述了临床前(IDEAL 第 0 阶段)评估和前瞻性(IDEAL 第 1/2a 阶段)研究的协议,该研究旨在评估 ML 病灶检测算法的实用性,该算法旨在从结构性 MRI 中检测局灶性皮质发育不良,作为对接受耐药性癫痫颅内评估的儿童进行立体脑电图轨迹规划的辅助手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
22
审稿时长
17 weeks
期刊最新文献
The impact of adjuvant antibiotic hydrogel application on the primary stability of uncemented hip stems. Prospective randomized evaluation of the sustained impact of assistive artificial intelligence on anesthetists' ultrasound scanning for regional anesthesia. Clinical effectiveness of a modified muscle sparing posterior technique compared with a standard lateral approach in hip hemiarthroplasty for displaced intracapsular fractures (HemiSPAIRE): a multicenter, parallel-group, randomized controlled trial. IDEAL evaluation for global surgery innovation. No frugal innovation without frugal evaluation: the Global IDEAL Sub-Framework.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1