Role of Stat3 in NLRP3/caspase-1-mediated hippocampal neuronal pyroptosis in epileptic mice.

IF 1.6 4区 医学 Q4 NEUROSCIENCES Synapse Pub Date : 2021-12-01 Epub Date: 2022-01-12 DOI:10.1002/syn.22221
Qian Jiang, Guo Tang, Xue-Min Zhong, Dan-Rui Ding, Hui Wang, Jia-Ni Li
{"title":"Role of Stat3 in NLRP3/caspase-1-mediated hippocampal neuronal pyroptosis in epileptic mice.","authors":"Qian Jiang,&nbsp;Guo Tang,&nbsp;Xue-Min Zhong,&nbsp;Dan-Rui Ding,&nbsp;Hui Wang,&nbsp;Jia-Ni Li","doi":"10.1002/syn.22221","DOIUrl":null,"url":null,"abstract":"<p><p>Epilepsy, a fairly common neurological disorder, is linked to various sequelae and greatly impairs the quality of life. Meanwhile, there is evidence to suggest an association between pyroptosis and epilepsy. Accordingly, the current study sought to determine the role of signal transduction activator of transcription 3 (Stat3) in pyroptosis in epileptic mice. First, epileptic mouse models were induced by lithium chloride, atropine, and pilocarpine, and HT22 cells were treated with lipopolysaccharide (LPS) to establish in vitro hippocampal neuronal inflammation models. Subsequently, Stat3, NOD-like receptor protein 3 (NLRP3), cleaved-caspase-1, gasdermin D (GSDMD)-N, activated Stat3 (p-Stat3), and H3K9Ac levels were detected in the mouse hippocampus and HT22 cells. Morris water maze test was further performed to detect changes in the learning and memory abilities of epileptic mice, and hematoxylin-eosin staining and Nissl staining were conducted to detect the pathological injury. HT22 cell proliferation and apoptosis were also detected using a cell counting kit-8 assay and flow cytometry. An enzyme-linked immunosorbent assay was adopted to detect Interleukin (IL)-1β and IL-18 concentrations in the mouse hippocampus and HT22 cells. Furthermore, the enrichment of H3K9Ac and p-Stat3 in the NLRP3 promoter region was detected with the help of a chromatin immunoprecipitation assay. The obtained findings revealed that Stat3 was highly expressed in the hippocampus of epileptic mice and LPS-treated HT22 cells. Meanwhile, Stat3 silencing brought about improvements in the learning and memory abilities of the mice, in addition to alleviation of hippocampal neuronal damage and pyroptosis-related factors in hippocampal tissue and HT22 cells. We also observed that Stat3 bound to the NLRP3 promoter to promote H3K9 acetylation and NLRP3 transcription. Moreover, increasing H3K9Ac in cells annulled the inhibition of silencing Stat3 on neuronal pyroptosis. To conclude, our findings revealed that Stat3 bound to the NLRP3 promoter to augment H3K9 acetylation, NLRP3 transcription, and NLRP3/caspase-1-mediated neuronal pyroptosis, resulting in aggravation of neuronal damage in epileptic mice.</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synapse","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/syn.22221","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 10

Abstract

Epilepsy, a fairly common neurological disorder, is linked to various sequelae and greatly impairs the quality of life. Meanwhile, there is evidence to suggest an association between pyroptosis and epilepsy. Accordingly, the current study sought to determine the role of signal transduction activator of transcription 3 (Stat3) in pyroptosis in epileptic mice. First, epileptic mouse models were induced by lithium chloride, atropine, and pilocarpine, and HT22 cells were treated with lipopolysaccharide (LPS) to establish in vitro hippocampal neuronal inflammation models. Subsequently, Stat3, NOD-like receptor protein 3 (NLRP3), cleaved-caspase-1, gasdermin D (GSDMD)-N, activated Stat3 (p-Stat3), and H3K9Ac levels were detected in the mouse hippocampus and HT22 cells. Morris water maze test was further performed to detect changes in the learning and memory abilities of epileptic mice, and hematoxylin-eosin staining and Nissl staining were conducted to detect the pathological injury. HT22 cell proliferation and apoptosis were also detected using a cell counting kit-8 assay and flow cytometry. An enzyme-linked immunosorbent assay was adopted to detect Interleukin (IL)-1β and IL-18 concentrations in the mouse hippocampus and HT22 cells. Furthermore, the enrichment of H3K9Ac and p-Stat3 in the NLRP3 promoter region was detected with the help of a chromatin immunoprecipitation assay. The obtained findings revealed that Stat3 was highly expressed in the hippocampus of epileptic mice and LPS-treated HT22 cells. Meanwhile, Stat3 silencing brought about improvements in the learning and memory abilities of the mice, in addition to alleviation of hippocampal neuronal damage and pyroptosis-related factors in hippocampal tissue and HT22 cells. We also observed that Stat3 bound to the NLRP3 promoter to promote H3K9 acetylation and NLRP3 transcription. Moreover, increasing H3K9Ac in cells annulled the inhibition of silencing Stat3 on neuronal pyroptosis. To conclude, our findings revealed that Stat3 bound to the NLRP3 promoter to augment H3K9 acetylation, NLRP3 transcription, and NLRP3/caspase-1-mediated neuronal pyroptosis, resulting in aggravation of neuronal damage in epileptic mice.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stat3在NLRP3/caspase-1介导的癫痫小鼠海马神经元焦亡中的作用。
癫痫是一种相当常见的神经系统疾病,与各种后遗症有关,并极大地损害了生活质量。同时,有证据表明焦下垂与癫痫之间存在关联。因此,本研究试图确定转录信号转导激活因子3 (Stat3)在癫痫小鼠焦亡中的作用。首先,用氯化锂、阿托品和匹罗卡品诱导癫痫小鼠模型,并用脂多糖(LPS)处理HT22细胞,建立体外海马神经元炎症模型。随后,在小鼠海马和HT22细胞中检测Stat3、nod样受体蛋白3 (NLRP3)、裂解caspase-1、gasdermin D (GSDMD)-N、活化Stat3 (p-Stat3)和H3K9Ac水平。进一步采用Morris水迷宫实验检测癫痫小鼠学习记忆能力的变化,采用苏木精-伊红染色和尼氏染色检测病理性损伤。采用细胞计数试剂盒-8和流式细胞术检测HT22细胞的增殖和凋亡情况。采用酶联免疫吸附法检测小鼠海马和HT22细胞中白细胞介素(IL)-1β和IL-18的浓度。此外,利用染色质免疫沉淀法检测NLRP3启动子区域中H3K9Ac和p-Stat3的富集。结果表明,Stat3在癫痫小鼠海马和lps处理的HT22细胞中高表达。同时,Stat3沉默可以改善小鼠的学习和记忆能力,减轻海马神经元损伤,减轻海马组织和HT22细胞中的焦热相关因子。我们还观察到Stat3与NLRP3启动子结合,促进H3K9乙酰化和NLRP3转录。此外,细胞中H3K9Ac的增加抵消了沉默Stat3对神经元焦亡的抑制作用。总之,我们的研究结果表明Stat3结合NLRP3启动子增加H3K9乙酰化、NLRP3转录和NLRP3/caspase-1介导的神经元焦亡,导致癫痫小鼠神经元损伤加重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Synapse
Synapse 医学-神经科学
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
4-8 weeks
期刊介绍: SYNAPSE publishes articles concerned with all aspects of synaptic structure and function. This includes neurotransmitters, neuropeptides, neuromodulators, receptors, gap junctions, metabolism, plasticity, circuitry, mathematical modeling, ion channels, patch recording, single unit recording, development, behavior, pathology, toxicology, etc.
期刊最新文献
ERK1/2 Regulates Epileptic Seizures by Modulating the DRP1‐Mediated Mitochondrial Dynamic Calsyntenin-1 expression and function in brain tissue of lithium-pilocarpine rat seizure models. microRNA-125b-5p alleviated CCI-induced neuropathic pain and modulated neuroinflammation via targeting SOX11. High Impact AMPAkines Induce a Gq-Protein Coupled Endoplasmic Calcium Release in Cortical Neurons: A Possible Mechanism for Explaining the Toxicity of High Impact AMPAkines. Individual NMDA receptor GluN2 subunit signaling domains differentially regulate the postnatal maturation of hippocampal excitatory synaptic transmission and plasticity but not dendritic morphology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1