[The bioinformatic identification of proteins with varying levels of post-translational modifications in experimental ischemic stroke in mice].

Q3 Biochemistry, Genetics and Molecular Biology Biomeditsinskaya khimiya Pub Date : 2021-11-01 DOI:10.18097/PBMC20216706475
V S Skvortsov, Ya O Ivanova, A I Voronina
{"title":"[The bioinformatic identification of proteins with varying levels of post-translational modifications in experimental ischemic stroke in mice].","authors":"V S Skvortsov,&nbsp;Ya O Ivanova,&nbsp;A I Voronina","doi":"10.18097/PBMC20216706475","DOIUrl":null,"url":null,"abstract":"<p><p>The experimental data obtained by Simats A. et al. (Molecular and Cellular Proteomics, 2020, 19(12), 1921-1936) was analysed using a bioinformatic approach. Original experimental results available in the ProteomeXchange database were obtained using a comprehensive multidomain approach to identify potential blood biomarkers in ischemic stroke in mice. The identification of peptides with post-translational modification (PTM) was performed by us using the raw data (accession code PXD016538). Only phosphorylation and deamination were considered as PTMs. Different combinations of data sets (ischemic tissue with intact tissue, ischemic tissue with control taken from mice after sham surgery, etc.) were compared both in terms of the ratio of abundance for the modified peptide to the unmodified variant and in terms of absolute values of abundance. The most likely change in precisely PTM levels was shown for 27 proteins, which include dynamin, glycogen phosphorylase and 70 kDa heat shock protein.</p>","PeriodicalId":8889,"journal":{"name":"Biomeditsinskaya khimiya","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomeditsinskaya khimiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18097/PBMC20216706475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The experimental data obtained by Simats A. et al. (Molecular and Cellular Proteomics, 2020, 19(12), 1921-1936) was analysed using a bioinformatic approach. Original experimental results available in the ProteomeXchange database were obtained using a comprehensive multidomain approach to identify potential blood biomarkers in ischemic stroke in mice. The identification of peptides with post-translational modification (PTM) was performed by us using the raw data (accession code PXD016538). Only phosphorylation and deamination were considered as PTMs. Different combinations of data sets (ischemic tissue with intact tissue, ischemic tissue with control taken from mice after sham surgery, etc.) were compared both in terms of the ratio of abundance for the modified peptide to the unmodified variant and in terms of absolute values of abundance. The most likely change in precisely PTM levels was shown for 27 proteins, which include dynamin, glycogen phosphorylase and 70 kDa heat shock protein.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[小鼠实验性缺血性中风中不同水平翻译后修饰蛋白的生物信息学鉴定]。
Simats a . et al. (Molecular and Cellular Proteomics, 2020, 19(12), 1921-1936)获得的实验数据使用生物信息学方法进行了分析。ProteomeXchange数据库中可用的原始实验结果是使用综合多域方法获得的,用于识别小鼠缺血性中风中潜在的血液生物标志物。我们使用原始数据(登录码PXD016538)进行翻译后修饰肽的鉴定。只有磷酸化和脱氨作用被认为是PTMs。不同的数据集组合(缺血组织与完整组织、缺血组织与假手术后小鼠的对照等)在修饰肽与未修饰变体的丰度比率以及丰度绝对值方面进行了比较。27种蛋白质的PTM水平最可能发生精确的变化,包括动力蛋白、糖原磷酸化酶和70 kDa热休克蛋白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomeditsinskaya khimiya
Biomeditsinskaya khimiya Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
1.30
自引率
0.00%
发文量
49
期刊介绍: The aim of the Russian-language journal "Biomeditsinskaya Khimiya" (Biomedical Chemistry) is to introduce the latest results obtained by scientists from Russia and other Republics of the Former Soviet Union. The Journal will cover all major areas of Biomedical chemistry, including neurochemistry, clinical chemistry, molecular biology of pathological processes, gene therapy, development of new drugs and their biochemical pharmacology, introduction and advertisement of new (biochemical) methods into experimental and clinical medicine etc. The Journal also publish review articles. All issues of journal usually contain invited reviews. Papers written in Russian contain abstract (in English).
期刊最新文献
Apoptotic endonuclease EndoG induces alternative splicing of Caspase-2. Bioinformatic identification of proteins with altered PTM levels in a mouse line established to study the mechanisms of the development of fibromuscular dysplasia. Internalization of extracellular vesicles of cancer patients by peripheral blood mononuclear cells during polychemotherapy: connection with neurotoxicity. MicroRNAs as promising diagnostic and prognostic markers for the human genitourinary cancer. Molecular mechanisms of the regulatory action of high-density lipoproteins on the endothelial function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1