S. Chandra Shekar , Wancheng Zhao , Thomas K. Weldeghiorghis, Tuo Wang
{"title":"Effect of cross polarization radiofrequency phases on signal phase","authors":"S. Chandra Shekar , Wancheng Zhao , Thomas K. Weldeghiorghis, Tuo Wang","doi":"10.1016/j.ssnmr.2021.101771","DOIUrl":null,"url":null,"abstract":"<div><p><span>Utilizing phases of radio frequency (RF) pulses to manipulate spin dynamics is routine in NMR and MRI, leading to spectacular techniques like phase cycling. In a very different area, cross polarization (CP) also has a long history as part of a vast number of solid-state NMR pulse sequences. However, a detailed study devoted to the effect of CP RF phases on </span>NMR signal<span>, seems not to be readily available. From first principles, we arrive at a simple dependence of NMR signal on arbitrary CP RF phases, for static and MAS conditions, accompanied by experimental verification. In the process, the CP propagator emerges as a product of RF “pulses” and a period of “free precession”, conforming to coherence transfer pathway theory. The theoretical expressions may lend confidence for dealing with CP blocks with tunable phases in pulse sequences.</span></p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid state nuclear magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092620402100059X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2
Abstract
Utilizing phases of radio frequency (RF) pulses to manipulate spin dynamics is routine in NMR and MRI, leading to spectacular techniques like phase cycling. In a very different area, cross polarization (CP) also has a long history as part of a vast number of solid-state NMR pulse sequences. However, a detailed study devoted to the effect of CP RF phases on NMR signal, seems not to be readily available. From first principles, we arrive at a simple dependence of NMR signal on arbitrary CP RF phases, for static and MAS conditions, accompanied by experimental verification. In the process, the CP propagator emerges as a product of RF “pulses” and a period of “free precession”, conforming to coherence transfer pathway theory. The theoretical expressions may lend confidence for dealing with CP blocks with tunable phases in pulse sequences.
期刊介绍:
The journal Solid State Nuclear Magnetic Resonance publishes original manuscripts of high scientific quality dealing with all experimental and theoretical aspects of solid state NMR. This includes advances in instrumentation, development of new experimental techniques and methodology, new theoretical insights, new data processing and simulation methods, and original applications of established or novel methods to scientific problems.