Establishment of an oligoasthenospermia mouse model based on TAp73 gene suppression.

Animal Models and Experimental Medicine Pub Date : 2021-11-09 eCollection Date: 2021-12-01 DOI:10.1002/ame2.12186
Hong-Juan Liu, Meng-Yun Deng, Yan-Yan Zhu, De-Ling Wu, Xiao-Hui Tong, Li Li, Lei Wang, Fei Xu, Tong-Sheng Wang
{"title":"Establishment of an oligoasthenospermia mouse model based on <i>TAp73</i> gene suppression.","authors":"Hong-Juan Liu, Meng-Yun Deng, Yan-Yan Zhu, De-Ling Wu, Xiao-Hui Tong, Li Li, Lei Wang, Fei Xu, Tong-Sheng Wang","doi":"10.1002/ame2.12186","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Oligoasthenospermia is one of the main causes of male infertility. Researchers usually use chemical drugs to directly damage germ cells to prepare oligoasthenospermia models, which disregards the adhesion and migration between spermatogenic cells and Sertoli cells. <i>TAp73</i> is a critical regulator of the adhesin of germ cell; thus, we sought to explore a novel oligoasthenospermia model based on <i>TAp73</i> gene suppression.</p><p><strong>Methods: </strong>Mice in the Pifithrin-α group were injected intraperitoneally with 2.5 mg/kg Pifithrin-α (<i>TAp73</i> inhibitor) daily for 30 consecutive days. Reproductive hormone levels and epididymal sperm quality, as well as the network morphology of Sertoli cells were tested.</p><p><strong>Results: </strong>Sperm density, motility, and the relative protein and mRNA expression of <i>TAp73</i> and <i>Nectin 2</i> were obviously decreased in the Pifithrin-α group compared with the normal control group. No significant distinction was observed in the relative mRNA and protein expression of <i>ZO-1</i>. Furthermore, the tight junctions (TJs) and apical ectoplasmic specialization (ES) were destroyed in the Pifithrin-α group.</p><p><strong>Conclusion: </strong>The above results indicate that we successfully established a new oligoasthenospermia mouse model. This study provides a foundation for further exploration of the roles of <i>TAp73</i> genes during spermatogenesis and provides new research objects for further oligospermia research and future drug discovery.</p>","PeriodicalId":7840,"journal":{"name":"Animal Models and Experimental Medicine","volume":" ","pages":"351-358"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/66/c9/AME2-4-351.PMC8690982.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Models and Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ame2.12186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Oligoasthenospermia is one of the main causes of male infertility. Researchers usually use chemical drugs to directly damage germ cells to prepare oligoasthenospermia models, which disregards the adhesion and migration between spermatogenic cells and Sertoli cells. TAp73 is a critical regulator of the adhesin of germ cell; thus, we sought to explore a novel oligoasthenospermia model based on TAp73 gene suppression.

Methods: Mice in the Pifithrin-α group were injected intraperitoneally with 2.5 mg/kg Pifithrin-α (TAp73 inhibitor) daily for 30 consecutive days. Reproductive hormone levels and epididymal sperm quality, as well as the network morphology of Sertoli cells were tested.

Results: Sperm density, motility, and the relative protein and mRNA expression of TAp73 and Nectin 2 were obviously decreased in the Pifithrin-α group compared with the normal control group. No significant distinction was observed in the relative mRNA and protein expression of ZO-1. Furthermore, the tight junctions (TJs) and apical ectoplasmic specialization (ES) were destroyed in the Pifithrin-α group.

Conclusion: The above results indicate that we successfully established a new oligoasthenospermia mouse model. This study provides a foundation for further exploration of the roles of TAp73 genes during spermatogenesis and provides new research objects for further oligospermia research and future drug discovery.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 TAp73 基因抑制的少精子症小鼠模型的建立
背景:少精症是导致男性不育的主要原因之一。研究人员通常使用化学药物直接损伤生精细胞来制备少精症模型,这就破坏了生精细胞和 Sertoli 细胞之间的粘附和迁移。TAp73是生精细胞粘附素的重要调节因子,因此,我们试图探索一种基于TAp73基因抑制的新型少精症模型:方法:每天腹腔注射2.5 mg/kg Pifithrin-α(TAp73抑制剂),连续30天。对生殖激素水平、附睾精子质量以及 Sertoli 细胞的网络形态进行了检测:结果:与正常对照组相比,Pifithrin-α组的精子密度、活力、TAp73和Nectin 2的相对蛋白和mRNA表达量明显下降。ZO-1的相对mRNA和蛋白表达量则无明显差异。此外,Pifithrin-α组的紧密连接(TJ)和顶端外质特化(ES)被破坏:上述结果表明,我们成功地建立了一种新的少精子症小鼠模型。本研究为进一步探讨TAp73基因在精子发生过程中的作用奠定了基础,为进一步研究少精症和未来药物开发提供了新的研究对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Establishment of a non-alcoholic fatty liver disease model by high fat diet in adult zebrafish. Cross‐kingdom regulation by plant‐derived miRNAs in mammalian systems “Blindmen and an elephant”: The need for animals in research, drug safety studies, and understanding civilizational diseases Identification of optimal reference genes in golden Syrian hamster with ethanol- and palmitoleic acid-induced acute pancreatitis using quantitative real-time polymerase chain reaction. Characterization of genetic humanized mice with transgenic HLA DP401 or DRA but deficient in endogenous murine MHC class II genes upon Staphylococcus aureus pneumonia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1