Isisdoris Rodrigues de Souza, Patrícia Savio de Araujo-Souza, Daniela Morais Leme
{"title":"Genetic variants affecting chemical mediated skin immunotoxicity.","authors":"Isisdoris Rodrigues de Souza, Patrícia Savio de Araujo-Souza, Daniela Morais Leme","doi":"10.1080/10937404.2021.2013372","DOIUrl":null,"url":null,"abstract":"<p><p>The skin is an immune-competent organ and this function may be impaired by exposure to chemicals, which may ultimately result in immune-mediated dermal disorders. Interindividual variability to chemical-induced skin immune reactions is associated with intrinsic individual characteristics and their genomes. In the last 30-40 years, several genes influencing susceptibility to skin immune reactions were identified. The aim of this review is to provide information regarding common genetic variations affecting skin immunotoxicity. The polymorphisms selected for this review are related to xenobiotic-metabolizing enzymes (<i>CYPA1</i> and <i>CYPB1</i> genes), antioxidant defense (<i>GSTM1, GSTT1</i>, and <i>GSTP1</i> genes), aryl hydrocarbon receptor signaling pathway (<i>AHR</i> and <i>ARNT</i> genes), skin barrier function transepidermal water loss (<i>FLG, CASP14</i>, and <i>SPINK5</i> genes), inflammation (<i>TNF, IL10, IL6, IL18, IL31</i>, and <i>TSLP</i> genes), major histocompatibility complex (MHC) and neuroendocrine system peptides (<i>CALCA, TRPV1, ACE</i> genes). These genes present variants associated with skin immune responses and diseases, as well as variants associated with protecting skin immune homeostasis following chemical exposure. The molecular and association studies focusing on these genetic variants may elucidate their functional consequences and contribution in the susceptibility to skin immunotoxicity. Providing information on how genetic variations affect the skin immune system may reduce uncertainties in estimating chemical hazards/risks for human health in the future.</p>","PeriodicalId":49971,"journal":{"name":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","volume":"25 2","pages":"43-95"},"PeriodicalIF":6.4000,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicology and Environmental Health-Part B-Critical Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10937404.2021.2013372","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
The skin is an immune-competent organ and this function may be impaired by exposure to chemicals, which may ultimately result in immune-mediated dermal disorders. Interindividual variability to chemical-induced skin immune reactions is associated with intrinsic individual characteristics and their genomes. In the last 30-40 years, several genes influencing susceptibility to skin immune reactions were identified. The aim of this review is to provide information regarding common genetic variations affecting skin immunotoxicity. The polymorphisms selected for this review are related to xenobiotic-metabolizing enzymes (CYPA1 and CYPB1 genes), antioxidant defense (GSTM1, GSTT1, and GSTP1 genes), aryl hydrocarbon receptor signaling pathway (AHR and ARNT genes), skin barrier function transepidermal water loss (FLG, CASP14, and SPINK5 genes), inflammation (TNF, IL10, IL6, IL18, IL31, and TSLP genes), major histocompatibility complex (MHC) and neuroendocrine system peptides (CALCA, TRPV1, ACE genes). These genes present variants associated with skin immune responses and diseases, as well as variants associated with protecting skin immune homeostasis following chemical exposure. The molecular and association studies focusing on these genetic variants may elucidate their functional consequences and contribution in the susceptibility to skin immunotoxicity. Providing information on how genetic variations affect the skin immune system may reduce uncertainties in estimating chemical hazards/risks for human health in the future.
期刊介绍:
"Journal of Toxicology and Environmental Health: Part B - Critical Reviews" is an academic journal published by Taylor & Francis, focusing on the critical examination of research in the areas of environmental exposure and population health. With an ISSN identifier of 1093-7404, this journal has established itself as a significant source of scholarly content in the field of toxicology and environmental health.
Since its inception, the journal has published over 424 articles that have garnered 35,097 citations, reflecting its impact and relevance in the scientific community. Known for its comprehensive reviews, the journal also goes by the names "Critical Reviews" and "Journal of Toxicology & Environmental Health, Part B, Critical Reviews."
The journal's mission is to provide a platform for in-depth analysis and critical discussion of the latest findings in toxicology, environmental health, and related disciplines. By doing so, it contributes to the advancement of knowledge and understanding of the complex interactions between environmental factors and human health, aiding in the development of strategies to protect and improve public health.