Sensory feedback expands dynamic complexity and aids in robustness against noise.

IF 1.6 4区 工程技术 Q3 COMPUTER SCIENCE, CYBERNETICS Biological Cybernetics Pub Date : 2022-06-01 Epub Date: 2022-01-04 DOI:10.1007/s00422-021-00917-2
Alexander J White
{"title":"Sensory feedback expands dynamic complexity and aids in robustness against noise.","authors":"Alexander J White","doi":"10.1007/s00422-021-00917-2","DOIUrl":null,"url":null,"abstract":"<p><p>It has been hypothesized that sensory feedback is a critical component in determining the functionality of a central pattern generator. To test this, Yu and Thomas's recent work Yu and Thomas (Biol Cybern 115(2):135-160, 2021) built a model of a half-center oscillator coupled to a simple muscular model with sensory feedback. They showed that sensory feedback increases robustness against external noise, while simultaneously expanding the potential repertoire of functions the half-center oscillator can perform. However, they show that this comes at the cost of robustness against internal noise.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":" ","pages":"267-269"},"PeriodicalIF":1.6000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-021-00917-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

Abstract

It has been hypothesized that sensory feedback is a critical component in determining the functionality of a central pattern generator. To test this, Yu and Thomas's recent work Yu and Thomas (Biol Cybern 115(2):135-160, 2021) built a model of a half-center oscillator coupled to a simple muscular model with sensory feedback. They showed that sensory feedback increases robustness against external noise, while simultaneously expanding the potential repertoire of functions the half-center oscillator can perform. However, they show that this comes at the cost of robustness against internal noise.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
感官反馈扩大了动态复杂性,并有助于对噪声的鲁棒性。
据推测,感觉反馈是决定中枢模式发生器功能的关键组成部分。为了验证这一点,Yu和Thomas (Biol Cybern 115(2):135- 160,2021)建立了一个半中心振荡器模型,该模型与一个具有感官反馈的简单肌肉模型耦合。他们表明,感觉反馈增加了对外部噪声的鲁棒性,同时扩展了半中心振荡器可以执行的潜在功能。然而,他们表明,这是以对内部噪声的鲁棒性为代价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biological Cybernetics
Biological Cybernetics 工程技术-计算机:控制论
CiteScore
3.50
自引率
5.30%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.
期刊最新文献
Stochastic dynamics of postural sway modeled by double Ornstein Uhlenbeck process. Encoding of movement primitives and body posture through distributed proprioception in walking and climbing insects. Task success in trained spiking neural network models coincides with emergence of cross-stimulus-modulated inhibition. A control engineering perspective on the advantages of efference copies. Molecular dynamics simulations of proteins: an in-depth review of computational strategies, structural insights, and their role in medicinal chemistry and drug development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1