Bingyi Tan, Zenong Yuan, Qingyu Zhang, Xu Xiqiang, Jun Dong
{"title":"The NF-κB pathway is critically implicated in the oncogenic phenotype of human osteosarcoma cells.","authors":"Bingyi Tan, Zenong Yuan, Qingyu Zhang, Xu Xiqiang, Jun Dong","doi":"10.32725/jab.2021.021","DOIUrl":null,"url":null,"abstract":"<p><p>NF-κB is activated in a variety of human cancers. However, its role in osteosarcoma (OS) remains unknown. Here, we have elucidated the implication of NF-κB in the oncogenic phenotype of OS tumor cells. We reported that activation of NF-κB was a common event in the human OS. Inhibition of NF-κB using inhibitor Bay 11-7085 repressed proliferation, survival, migration, and invasion but increased apoptosis in 143B and MG63 OS cells, indicating that NF-κB is critically implicated in the oncogenesis of OS. Notably, Bay 11-7085 not only inactivated NF-κB but also reduced the phosphorylation of AKT via its induction of PTEN, suggesting the existence of a novel NF-κB/PTEN/PI3K/AKT axis. In vivo, Bay 11-7085 suppressed tumor growth in the bone by targeting NF-κB and AKT. Interestingly, combined treatment with Bay 11-7085 and the PI3K inhibitor, LY294002, triggered an augmented antitumor effect. Our results demonstrate that NF-κB potentiates the growth and aggressiveness of OS. Pharmacological inhibition of NF-κB represents a promising therapy for the treatment of OS.</p>","PeriodicalId":14912,"journal":{"name":"Journal of applied biomedicine","volume":"19 4","pages":"190-201"},"PeriodicalIF":2.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.32725/jab.2021.021","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 2
Abstract
NF-κB is activated in a variety of human cancers. However, its role in osteosarcoma (OS) remains unknown. Here, we have elucidated the implication of NF-κB in the oncogenic phenotype of OS tumor cells. We reported that activation of NF-κB was a common event in the human OS. Inhibition of NF-κB using inhibitor Bay 11-7085 repressed proliferation, survival, migration, and invasion but increased apoptosis in 143B and MG63 OS cells, indicating that NF-κB is critically implicated in the oncogenesis of OS. Notably, Bay 11-7085 not only inactivated NF-κB but also reduced the phosphorylation of AKT via its induction of PTEN, suggesting the existence of a novel NF-κB/PTEN/PI3K/AKT axis. In vivo, Bay 11-7085 suppressed tumor growth in the bone by targeting NF-κB and AKT. Interestingly, combined treatment with Bay 11-7085 and the PI3K inhibitor, LY294002, triggered an augmented antitumor effect. Our results demonstrate that NF-κB potentiates the growth and aggressiveness of OS. Pharmacological inhibition of NF-κB represents a promising therapy for the treatment of OS.
期刊介绍:
Journal of Applied Biomedicine promotes translation of basic biomedical research into clinical investigation, conversion of clinical evidence into practice in all medical fields, and publication of new ideas for conquering human health problems across disciplines.
Providing a unique perspective, this international journal publishes peer-reviewed original papers and reviews offering a sensible transfer of basic research to applied clinical medicine. Journal of Applied Biomedicine covers the latest developments in various fields of biomedicine with special attention to cardiology and cardiovascular diseases, genetics, immunology, environmental health, toxicology, neurology and oncology as well as multidisciplinary studies. The views of experts on current advances in nanotechnology and molecular/cell biology will be also considered for publication as long as they have a direct clinical impact on human health. The journal does not accept basic science research or research without significant clinical implications. Manuscripts with innovative ideas and approaches that bridge different fields and show clear perspectives for clinical applications are considered with top priority.